NILPOTENT VARIETIES IN SYMMETRIC SPACES AND TWISTED AFFINE SCHUBERT VARIETIES

被引:0
作者
Hong, Jiuzu [1 ]
Korkeathikhun, Korkeat [2 ]
机构
[1] Univ North Carolina Chapel Hill, Dept Math, Chapel Hill, NC 27599 USA
[2] Natl Univ Singapore, Dept Math, Singapore 119076, Singapore
来源
REPRESENTATION THEORY | 2022年 / 26卷
基金
美国国家科学基金会;
关键词
SPRINGER CORRESPONDENCE; GEOMETRIC SATAKE; SINGULARITIES;
D O I
10.1090/ert/613
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We relate the geometry of Schubert varieties in twisted affine Grassmannian and the nilpotent varieties in symmetric spaces. This extends some results of Achar-Henderson in the twisted setting. We also get some ap-plications to the geometry of the order 2 nilpotent varieties in certain classical symmetric spaces.
引用
收藏
页码:585 / 615
页数:31
相关论文
共 31 条
[1]   GEOMETRIC SATAKE, SPRINGER CORRESPONDENCE, AND SMALL REPRESENTATIONS II [J].
Achar, Pramod N. ;
Henderson, Anthony ;
Riche, Simon .
REPRESENTATION THEORY, 2015, 19 :94-166
[2]   Geometric Satake, Springer correspondence and small representations [J].
Achar, Pramod N. ;
Henderson, Anthony .
SELECTA MATHEMATICA-NEW SERIES, 2013, 19 (04) :949-986
[3]  
Besson Marc, 2021, THESIS U N CAROLINA
[4]  
BOREL A., 1991, Linear algebraic groups,, V162
[5]   The sum of generalized exponents and Chevalley's restriction theorem for modules of covariants [J].
Broer, A .
INDAGATIONES MATHEMATICAE-NEW SERIES, 1995, 6 (04) :385-396
[6]  
Brylinski R., 1989, J AM MATH SOC, V2, P517
[7]  
Carter Roger W., 1993, FINITE GROUPS LIE TY
[8]  
Chen TH, 2020, MATH RES LETT, V27, P1281
[9]  
Collingwood D. H., 1993, Nilpotent orbits in semisimple Lie algebras
[10]  
Elashvili A.G., 2005, AM MATH SOC TRANSL 2, V213, P85