Assimilation of Remotely Sensed Leaf Area Index Enhances the Estimation of Anthropogenic Irrigation Water Use

被引:13
作者
Nie, Wanshu [1 ]
Kumar, Sujay V. [2 ]
Peters-Lidard, Christa D. [3 ]
Zaitchik, Benjamin F. [1 ]
Arsenault, Kristi R. [2 ,4 ]
Bindlish, Rajat [2 ]
Liu, Pang-Wei [2 ,5 ]
机构
[1] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA
[2] NASA Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD USA
[3] NASA Goddard Space Flight Ctr, Earth Sci Div, Greenbelt, MD USA
[4] Sci Applict Int Corp, Mclean, VA USA
[5] Sci Syst & Applict Inc, Lanham, MD USA
基金
美国国家航空航天局;
关键词
irrigation; data assimilation; leaf area index; Noah-MP; LAND-SURFACE MODEL; SOIL-MOISTURE; HIGH-PLAINS; GROUNDWATER; VEGETATION; STORAGE; INFORMATION; DEPLETION; IMPACTS; STATES;
D O I
10.1029/2022MS003040
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Representation of irrigation in Earth System Models has advanced over the past decade, yet large uncertainties persist in the effective simulation of irrigation practices, particularly over locations where the on-ground practices and climate impacts are less reliably known. Here we investigate the utility of assimilating remotely sensed vegetation data for improving irrigation water use and associated fluxes within a land surface model. We show that assimilating optical sensor-based leaf area index estimates significantly improves the simulation of irrigation water use when compared to the USGS ground reports. For heavily irrigated areas, assimilation improves the evaporative fluxes and gross primary production (GPP) simulations, with the median correlation increasing by 0.1-1.1 and 0.3-0.6, respectively, as compared to the reference datasets. Further, bias improvements in the range of 14-35 mm mo(-1) and 10-82 g m(-2) mo(-1) are obtained in evaporative fluxes and GPP as a result of incorporating vegetation constraints, respectively. These results demonstrate that the use of remotely sensed vegetation data is an effective, observation-informed, globally applicable approach for simulating irrigation and characterizing its impacts on water and carbon states.
引用
收藏
页数:14
相关论文
共 69 条
[1]   Sequential assimilation of satellite-derived vegetation and soil moisture products using SURFEX_v8.0: LDAS-Monde assessment over the Euro-Mediterranean area [J].
Albergel, Clement ;
Munier, Simon ;
Leroux, Delphine Jennifer ;
Dewaele, Helene ;
Fairbairn, David ;
Barbu, Alina Lavinia ;
Gelati, Emiliano ;
Dorigo, Wouter ;
Faroux, Stephanie ;
Meurey, Catherine ;
Le Moigne, Patrick ;
Decharme, Bertrand ;
Mahfouf, Jean-Francois ;
Calvet, Jean-Christophe .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2017, 10 (10) :3889-3912
[2]   A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation [J].
Anderson, Martha C. ;
Norman, John M. ;
Mecikalski, John R. ;
Otkin, Jason A. ;
Kustas, William P. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D10)
[3]  
Asoka A, 2017, NAT GEOSCI, V10, P109, DOI [10.1038/ngeo2869, 10.1038/NGEO2869]
[4]  
Aus derBeek., 2010, ADV GEOSCI, V27, P79, DOI DOI 10.5194/ADGEO-27-79-2010
[5]  
Ball J.T, 1987, PROGR PHOTOSYNTHESIS, V4, P221, DOI 10.1007/978-94-017-0519-6_48
[6]   Integrating ASCAT surface soil moisture and GEOV1 leaf area index into the SURFEX modelling platform: a land data assimilation application over France [J].
Barbu, A. L. ;
Calvet, J. -C. ;
Mahfouf, J. -F. ;
Lafont, S. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2014, 18 (01) :173-192
[7]  
Bonan G. B., 1996, Tech. Rep. PB-97-131494/XAB, DOI DOI 10.5065/D6DF6P5X
[8]   Merging remote sensing data and national agricultural statistics to model change in irrigated agriculture [J].
Brown, Jesslyn F. ;
Pervez, Md Shahriar .
AGRICULTURAL SYSTEMS, 2014, 127 :28-40
[9]   Development and assessment of the SMAP enhanced passive soil moisture product [J].
Chan, S. K. ;
Bindlish, R. ;
O'Neill, P. ;
Jackson, T. ;
Njoku, E. ;
Dunbar, S. ;
Chaubell, J. ;
Piepmeier, J. ;
Yueh, S. ;
Entekhabi, D. ;
Colliander, A. ;
Chen, F. ;
Cosh, M. H. ;
Caldwell, T. ;
Walker, J. ;
Berg, A. ;
McNairn, H. ;
Thibeault, M. ;
Martinez-Fernandez, J. ;
Uldall, F. ;
Seyfried, M. ;
Bosch, D. ;
Starks, P. ;
Collins, C. Holifield ;
Prueger, J. ;
van der Velde, R. ;
Asanuma, J. ;
Palecki, M. ;
Small, E. E. ;
Zreda, M. ;
Calvet, J. ;
Crow, W. T. ;
Kerr, Y. .
REMOTE SENSING OF ENVIRONMENT, 2018, 204 :931-941
[10]   PHYSIOLOGICAL AND ENVIRONMENTAL-REGULATION OF STOMATAL CONDUCTANCE, PHOTOSYNTHESIS AND TRANSPIRATION - A MODEL THAT INCLUDES A LAMINAR BOUNDARY-LAYER [J].
COLLATZ, GJ ;
BALL, JT ;
GRIVET, C ;
BERRY, JA .
AGRICULTURAL AND FOREST METEOROLOGY, 1991, 54 (2-4) :107-136