Two classes of fractal structures for the (2+1)-dimensional dispersive long wave equation

被引:23
作者
Ma, ZY [1 ]
Zheng, CL
机构
[1] Zhejiang Lishui Univ, Coll Sci, Lishui 323000, Peoples R China
[2] Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China
来源
CHINESE PHYSICS | 2006年 / 15卷 / 01期
关键词
mapping approach; DLW equation; explicit solution; fractal;
D O I
10.1088/1009-1963/15/1/008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the mapping approach via a Riccati equation, a series of variable separation excitations with three arbitrary functions for the (2+1)-dimensional dispersive long wave (DLW) equation are derived. In addition to the usual localized coherent soliton excitations like dromions, rings, peakons and compactions, etc, some new types of excitations that possess fractal behaviour are obtained by introducing appropriate lower-dimensional localized patterns and Jacobian elliptic functions.
引用
收藏
页码:45 / 52
页数:8
相关论文
共 36 条
[1]   SPECTRAL TRANSFORM FOR A 2-SPATIAL DIMENSION EXTENSION OF THE DISPERSIVE LONG-WAVE EQUATION [J].
BOITI, M ;
LEON, JJP ;
PEMPINELLI, F .
INVERSE PROBLEMS, 1987, 3 (03) :371-387
[2]   Transport properties of a classical one-dimensional kicked billiard model [J].
Chen, HS ;
Wang, J ;
Gu, Y .
CHINESE PHYSICS LETTERS, 2000, 17 (02) :85-87
[3]   NEW SIMILARITY REDUCTIONS OF THE BOUSSINESQ EQUATION [J].
CLARKSON, PA ;
KRUSKAL, MD .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (10) :2201-2213
[4]   Auto-Backlund transformation and similarity reductions for general variable coefficient KdV equations [J].
Fan, EG .
PHYSICS LETTERS A, 2002, 294 (01) :26-30
[5]  
Fang JP, 2005, COMMUN THEOR PHYS, V43, P245
[6]   Optical solitary waves in the higher order nonlinear Schrodinger equation [J].
Gedalin, M ;
Scott, TC ;
Band, YB .
PHYSICAL REVIEW LETTERS, 1997, 78 (03) :448-451
[7]   Nonlinear dynamics - Chaos in space and time [J].
Gollub, JP ;
Cross, MC .
NATURE, 2000, 404 (6779) :710-711
[8]   DYNAMICS OF SOLITONS IN NEARLY INTEGRABLE SYSTEMS [J].
KIVSHAR, YS ;
MALOMED, BA .
REVIEWS OF MODERN PHYSICS, 1989, 61 (04) :763-915
[9]   New periodic solutions to a kind of nonlinear wave equations [J].
Liu, SK ;
Fu, ZT ;
Liu, SD ;
Zhao, Q .
ACTA PHYSICA SINICA, 2002, 51 (01) :10-14
[10]   Expansion method about the Jacobi elliptic function and its applications to nonlinear wave equations [J].
Liu, SK ;
Fu, ZT ;
Liu, SD ;
Zhao, Q .
ACTA PHYSICA SINICA, 2001, 50 (11) :2068-2073