CdSe/CdTe interface band gaps and band offsets calculated using spin-orbit and self-energy corrections

被引:15
作者
Ribeiro, M., Jr. [1 ]
Ferreira, L. G. [2 ]
Fonseca, L. R. C. [3 ]
Ramprasad, R. [4 ]
机构
[1] Ctr Pesquisas Avancadas Wernher von Braun, BR-13098392 Campinas, SP, Brazil
[2] Univ Sao Paulo, Inst Fis, Dept Fis Mat & Mecan, BR-05315970 Sao Paulo, Brazil
[3] Univ Estadual Campinas, Ctr Semicond Components, BR-13083870 Campinas, SP, Brazil
[4] Univ Connecticut, Inst Mat Sci, Dept Chem Mat & Biomol Engn, Storrs, CT 06269 USA
来源
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS | 2012年 / 177卷 / 16期
基金
巴西圣保罗研究基金会;
关键词
Band gap; Band offset; Density functional theory; Excited states; Photovoltaic materials; ELECTRONIC-STRUCTURE; OPTICAL-PROPERTIES; CDSE; ZNS; PSEUDOPOTENTIALS; SEMICONDUCTORS; FILMS; WAVE;
D O I
10.1016/j.mseb.2011.12.044
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We performed ab initio calculations of the electronic structures of bulk CdSe and CdTe, and their interface band alignments on the CdSe in-plane lattice parameters. For this, we employed the LDA-1/2 self-energy correction scheme [L.G. Ferreira, M. Marques, L.K. Teles, Phys. Rev. B 78 (2008) 125116] to obtain corrected band gaps and band offsets. Our calculations include the spin-orbit effects for the bulk cases, which have shown to be of importance for the equilibrium systems and are possibly degraded in these strained semiconductors. Therefore, the SO showed reduced importance for the band alignment of this particular system. Moreover, the electronic structure calculated along the transition region across the CdSe/CdTe interface shows an interesting non-monotonic variation of the band gap in the range 0.8-1.8 eV, which may enhance the absorption of light for corresponding frequencies at the interface between these two materials in photovoltaic applications. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1460 / 1464
页数:5
相关论文
共 39 条
  • [1] A METHOD FOR DETERMINING BAND OFFSETS IN SEMICONDUCTOR SUPERLATTICES AND INTERFACES
    BASS, JM
    OLOUMI, M
    MATTHAI, CC
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 1989, 1 (51) : 10625 - 10628
  • [2] ELECTRONIC STRUCTURE AND OPTICAL PROPERTIES OF HEXAGONAL CDSE CDS AND ZNS
    BERGSTRESSER, TK
    COHEN, ML
    [J]. PHYSICAL REVIEW, 1967, 164 (03): : 1069 - +
  • [3] Band structures of II-VI semiconductors using Gaussian basis functions with separable ab initio pseudopotentials: Application to prediction of band offsets
    Chen, XJ
    Hua, XL
    Hu, JS
    Langlois, JM
    Goddard, WA
    [J]. PHYSICAL REVIEW B, 1996, 53 (03): : 1377 - 1387
  • [4] Delerue C., 2004, NANOSTRUCTURES THEOR
  • [5] Slater half-occupation technique revisited: the LDA-1/2 and GGA-1/2 approaches for atomic ionization energies and band gaps in semiconductors
    Ferreira, Luiz G.
    Marques, Marcelo
    Teles, Lara K.
    [J]. AIP ADVANCES, 2011, 1 (03):
  • [6] Fiolhais C., 2002, A primer in density functional theory
  • [7] Atomic and electronic structure of the CdTe(001) surface:: LDA and GW calculations
    Gundel, S
    Fleszar, A
    Faschinger, W
    Hanke, W
    [J]. PHYSICAL REVIEW B, 1999, 59 (23): : 15261 - 15269
  • [8] Hellwege K. H., 1982, NUMERICAL DATA FUN A, V22
  • [9] Hellwege K. H., 1982, NUMERICAL DATA FUN A, V17
  • [10] INHOMOGENEOUS ELECTRON-GAS
    RAJAGOPAL, AK
    CALLAWAY, J
    [J]. PHYSICAL REVIEW B, 1973, 7 (05) : 1912 - 1919