A universal route to pattern formation in multicellular systems

被引:12
作者
Asllani, Malbor [1 ,2 ]
Carletti, Timoteo [2 ]
Fanelli, Duccio [3 ,4 ]
Maini, Philip K. [5 ]
机构
[1] Univ Limerick, Dept Math & Stat, MACSI, Limerick V94 T9PX, Ireland
[2] Univ Namur, Dept Math & NaXys, Namur Inst Complex Syst, Rempart Vierge 8, B-5000 Namur, Belgium
[3] Univ Firenze, INFN, Dipartimento Fis & Astron, Via Sansone 1, I-50019 Florence, Italy
[4] CSDC, Via Sansone 1, I-50019 Florence, Italy
[5] Univ Oxford, Math Inst, Woodstock Rd, Oxford OX2 6GG, England
关键词
Statistical and Nonlinear Physics; MECHANISM; INSTABILITY; ACTIVATOR;
D O I
10.1140/epjb/e2020-10206-3
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
A general framework for the generation of long wavelength patterns in multi-cellular (discrete) systems is proposed, which extends beyond conventional reaction-diffusion (continuum) paradigms. The standard partial differential equations of reaction-diffusion framework can be considered as a mean-field like ansatz which corresponds, in the biological setting, to sending to zero the size (or volume) of each individual cell. By relaxing this approximation and, provided a directionality in the flux is allowed for, we demonstrate here that instability leading to spatial pattern formation can always develop if the (discrete) system is large enough, namely, composed of sufficiently many cells, the units of spatial patchiness. The macroscopic patterns that follow the onset of the instability are robust and show oscillatory or steady state behavior.
引用
收藏
页数:11
相关论文
共 26 条
[1]   Structure and dynamical behavior of non-normal networks [J].
Asllani, Malbor ;
Lambiotte, Renaud ;
Carletti, Timoteo .
SCIENCE ADVANCES, 2018, 4 (12)
[2]   Turing instabilities on Cartesian product networks [J].
Asllani, Malbor ;
Busiello, Daniel M. ;
Carletti, Timoteo ;
Fanelli, Duccio ;
Planchon, Gwendoline .
SCIENTIFIC REPORTS, 2015, 5
[3]   The theory of pattern formation on directed networks [J].
Asllani, Malbor ;
Challenger, Joseph D. ;
Pavone, Francesco Saverio ;
Sacconi, Leonardo ;
Fanelli, Duccio .
NATURE COMMUNICATIONS, 2014, 5
[4]  
Ball P., 1999, The Self-Made Tapestry: Pattern Formation in Nature
[5]   Pattern Selection in Growing Tubular Tissues [J].
Ciarletta, P. ;
Balbi, V. ;
Kuhl, E. .
PHYSICAL REVIEW LETTERS, 2014, 113 (24)
[6]   A discrete cell model with adaptive signalling for aggregation of Dictyostelium discoideum [J].
Dallon, JC ;
Othmer, HG .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1997, 352 (1351) :391-417
[7]   THEORY OF BIOLOGICAL PATTERN FORMATION [J].
GIERER, A ;
MEINHARDT, H .
KYBERNETIK, 1972, 12 (01) :30-39
[8]   Osmosis in small pores: a molecular dynamics study of the mechanism of solvent transport [J].
Kim, KS ;
Davis, IS ;
Macpherson, PA ;
Pedley, TJ ;
Hill, AE .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2053) :273-296
[9]   Regular and irregular patterns in semiarid vegetation [J].
Klausmeier, CA .
SCIENCE, 1999, 284 (5421) :1826-1828
[10]   A REACTION-DIFFUSION WAVE ON THE SKIN OF THE MARINE ANGELFISH POMACANTHUS [J].
KONDO, S ;
ASAI, R .
NATURE, 1995, 376 (6543) :765-768