The improvement of the shear stress and oscillatory shear index of coronary arteries during Enhanced External Counterpulsation in patients with coronary heart disease

被引:45
作者
Xu, Ling [1 ]
Chen, Xi [2 ]
Cui, Ming [1 ]
Ren, Chuan [1 ]
Yu, Haiyi [1 ]
Gao, Wei [1 ]
Li, Dongguo [2 ]
Zhao, Wei [1 ]
机构
[1] Peking Univ, Dept Cardiol, NHC Key Lab Cardiovasc Mol Biol & Regulatory Pept, Hosp 3, Beijing, Peoples R China
[2] Capital Med Univ, Sch Biomed Engn, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
FRACTIONAL FLOW RESERVE; BLOOD-FLOW; PULSATILE FLOW; FOLLOW-UP; FLUID; BIFURCATION; PRESSURE; ATHEROSCLEROSIS; ANGIOGRAPHY; PATTERNS;
D O I
10.1371/journal.pone.0230144
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background Enhanced External Counterpulsation (EECP) can chronically relieve ischemic chest pain and improve the prognosis of coronary heart disease (CHD). Despite its role in mitigating heart complications, EECP and the mechanisms behind its therapeutic nature, such as its effects on blood flow hemodynamics, are still not fully understood. This study aims to elucidate the effect of EECP on significant hemodynamic parameters in the coronary arterial tree. Methods A finite volume method was used in conjunction with the inlet pressure wave (surrogated by the measured aortic pressure) before and during EECP and outlet flow resistance, assuming the blood as newtonian fluid. The time-average wall shear stress (TAWSS) and oscillatory shear index (OSI) were determined from the flow field. Results Regardless of the degree of vascular stenosis, hemodynamic conditions and flow patterns could be improved during EECP. In comparison with the original tree, the tree with a severe stenosis (75% area stenosis) demonstrated more significant improvement in hemodynamic conditions and flow patterns during EECP, with surface area ratio of TAWSS risk area (SAR-TAWSS) reduced from 12.3% to 6.7% (vs. SAR-TAWSS reduced from 7.2% to 5.6% in the original tree) and surface area ratio of OSI risk area (SAR-OSI) reduced from 6.8% to 2.5% (vs. SAR-OSI of both 0% before and during EECP in the original tree because of mild stenosis). Moreover, it was also shown that small ratio of diastolic pressure (D) and systolic pressure (S) (D/S) could only improve the hemodynamic condition mildly. The SAR-TAWSS reduction ratio significantly increased as D/S became larger. Conclusions A key finding of the study was that the improvement of hemodynamic conditions along the LMCA trees during EECP became more significant with the increase of D/S and the severity degree of stenoses at the bifurcation site. These findings have important implications on EECP as adjuvant therapy before or after percutaneous coronary intervention (PCI) in patients with diffuse atherosclerosis.
引用
收藏
页数:15
相关论文
共 42 条
[1]  
Braith RW, 2012, EXERC SPORT SCI REV, V40, P145, DOI 10.1097/JES.0b013e318253de5e
[2]  
CARO CG, 1971, CLIN SCI, V40, pP5
[3]   Prediction of the localization of high-risk coronary atherosclerotic plaques on the basis of low endothelial shear stress - An intravascular ultrasound and histopathology natural history study [J].
Chatzizisis, Yiannis S. ;
Jonas, Michael ;
Coskun, Ahmet U. ;
Beigel, Roy ;
Stone, Benjamin V. ;
Maynard, Charles ;
Gerrity, Ross G. ;
Daley, William ;
Rogers, Campbell ;
Edelman, Elazer R. ;
Feldman, Charles L. ;
Stone, Peter H. .
CIRCULATION, 2008, 117 (08) :993-1002
[4]   Hemodynamics of Enhanced External Counterpulsation with Different Coronary Stenosis [J].
Chen, Sihan ;
Li, Bao ;
Yang, Haisheng ;
Du, Jianhang ;
Lie, Xiaoling ;
Liu, Youjun .
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2018, 116 (02) :149-162
[5]   Healthy and diseased coronary bifurcation geometries influence near-wall and intravascular flow: A computational exploration of the hemodynamic risk [J].
Chiastra, Claudio ;
Gallo, Diego ;
Tasso, Paola ;
Iannaccone, Francesco ;
Migliavacca, Francesco ;
Wentzel, Jolanda J. ;
Morbiducci, Umberto .
JOURNAL OF BIOMECHANICS, 2017, 58 :79-88
[6]   Scaling of myocardial mass to flow and morphometry of coronary arteries [J].
Choy, Jenny Susana ;
Kassab, Ghassan S. .
JOURNAL OF APPLIED PHYSIOLOGY, 2008, 104 (05) :1281-1286
[7]   DIASTOLIC CORONARY-ARTERY PRESSURE-FLOW VELOCITY RELATIONSHIPS IN CONSCIOUS MAN [J].
DOLE, WP ;
RICHARDS, KL ;
HARTLEY, CJ ;
ALEXANDER, GM ;
CAMPBELL, AB ;
BISHOP, VS .
CARDIOVASCULAR RESEARCH, 1984, 18 (09) :548-554
[8]  
Du JH, 2015, MOL CELL BIOMECH, V12, P249
[9]  
Fan TT, 2017, PHYSIOL REP, V5, DOI 10.14814/phy2.13487
[10]  
Fung Y C, 1960, BLOOD FLOW ARTERIES