Behavior of solutions of 2D quasi-geostrophic equations

被引:337
作者
Constantin, P [1 ]
Wu, JH
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[2] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
关键词
quasi-geostrophic equation; existence; uniqueness; large time approximation;
D O I
10.1137/S0036141098337333
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study solutions to the 2D quasi-geostrophic (QGS) equation partial derivative theta/partial derivative t + u . del theta + kappa(-Delta)(alpha)theta = f and prove global existence and uniqueness of smooth solutions if alpha is an element of (1/2; 1]; weak solutions also exist globally but are proven to be unique only in the class of strong solutions. Detailed aspects of large time approximation by the linear QGS equation are obtained.
引用
收藏
页码:937 / 948
页数:12
相关论文
共 13 条
[1]   DECAY OF SOLUTIONS OF SOME NONLINEAR-WAVE EQUATIONS [J].
AMICK, CJ ;
BONA, JL ;
SCHONBEK, ME .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 81 (01) :1-49
[2]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[3]   FORMATION OF STRONG FRONTS IN THE 2-D QUASI-GEOSTROPHIC THERMAL ACTIVE SCALAR [J].
CONSTANTIN, P ;
MAJDA, AJ ;
TABAK, E .
NONLINEARITY, 1994, 7 (06) :1495-1533
[4]  
CONSTANTIN P, 1988, NAVIERSTOKES EQUATIO
[5]   SURFACE QUASI-GEOSTROPHIC DYNAMICS [J].
HELD, IM ;
PIERREHUMBERT, RT ;
GARNER, ST ;
SWANSON, KL .
JOURNAL OF FLUID MECHANICS, 1995, 282 :1-20
[6]  
Lions P.-L., 1998, Oxford Lecture Series in Mathematics and Its Applications, V2
[7]  
Pedlosky J., 1987, Geophysical Fluid Dynamics, DOI DOI 10.1007/978-1-4612-4650-3
[8]  
Resnick S.G., 1995, Ph.D. Thesis
[10]   L2 DECAY FOR WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS. [J].
Schonbek, Maria Elena .
Archive for Rational Mechanics and Analysis, 1985, 88 (03) :209-222