Covalent allosteric modulation: An emerging strategy for GPCRs drug discovery

被引:18
作者
Bian, Yuemin [1 ,2 ,3 ]
Jun, Jaden Jungho [1 ,2 ,3 ]
Cuyler, Jacob [1 ,2 ,3 ]
Xie, Xiang-Qun [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Sch Pharm, Dept Pharmaceut Sci, Pittsburgh, PA 15261 USA
[2] Sch Pharm, Computat Chem Genom Screening Ctr, Pittsburgh, PA 15261 USA
[3] NIH, Natl Ctr Excellence Computat Drug Abuse Res, Pittsburgh, PA 15261 USA
[4] Drug Discovery Inst, Pittsburgh, PA 15261 USA
[5] Univ Pittsburgh, Sch Med, Dept Computat Biol, Pittsburgh, PA 15261 USA
[6] Univ Pittsburgh, Sch Med, Dept Biol Struct, Pittsburgh, PA 15261 USA
关键词
GPCR; G-protein-coupled receptor; Allosteric modulator; Covalent bond; Cannabinoid receptors; Metabotropic glutamate receptors; Glucagon-like peptide-1 receptor; METABOTROPIC GLUTAMATE RECEPTORS; PROTEIN-COUPLED RECEPTORS; TARGET RESIDENCE TIME; CANNABINOID RECEPTOR; AFFINITY LABELS; ACTIVE METABOLITE; BINDING-SITE; ACTIVATION; KINETICS; LIGANDS;
D O I
10.1016/j.ejmech.2020.112690
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Designing covalent allosteric modulators brings new opportunities to the field of drug discovery towards G-protein-coupled receptors (GPCRs). Targeting an allosteric binding pocket can allow a modulator to have protein subtype selectivity and low drug resistance. Utilizing covalent warheads further enables the modulator to increase the binding potency and extend the duration of action. This review starts with GPCR allosteric modulation to discuss the structural biology of allosteric binding pockets, the different types of allosteric modulators, as well as the advantages of employing allosteric modulation. This is followed by a discussion on covalent modulators to clarify how covalent ligands can benefit the receptor modulation and to illustrate moieties that can commonly be used as covalent warheads. Finally, case studies are presented on designing class A, B, and C GPCR covalent allosteric modulators to demonstrate successful stories on combining allosteric modulation and covalent binding. Limitations and future perspectives are also covered. (C) 2020 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:14
相关论文
共 118 条
[1]   Allosteric Modulator ORG27569 Induces CB1 Cannabinoid Receptor High Affinity Agonist Binding State, Receptor Internalization, and Gi Protein-independent ERK1/2 Kinase Activation [J].
Ahn, Kwang H. ;
Mahmoud, Mariam M. ;
Kendall, Debra A. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (15) :12070-12082
[2]   Interaction of the active metabolite of prasugrel, R-138727, with cysteine 97 and cysteine 175 of the human P2Y12 receptor [J].
Algaier, I. ;
Jakubowski, J. A. ;
Asai, F. ;
Von Kuegelgen, I. .
JOURNAL OF THROMBOSIS AND HAEMOSTASIS, 2008, 6 (11) :1908-1914
[3]   Emerging Agents and New Mutations in EGFR-Mutant Lung Cancer [J].
Ayeni, Deborah ;
Politi, Katerina ;
Goldberg, Sarah B. .
CLINICAL CANCER RESEARCH, 2015, 21 (17) :3818-3820
[4]  
Berg JC, 2002, ADHESION SCIENCE AND ENGINEERING, VOL 2, P1
[5]   Computational systems pharmacology analysis of cannabidiol: a combination of chemogenomics-knowledgebase network analysis and integrated in silico modeling and simulation [J].
Bian, Yue-min ;
He, Xi-bing ;
Jing, Yan-kang ;
Wang, Li-rong ;
Wang, Jun-mei ;
Xie, Xiang-Qun .
ACTA PHARMACOLOGICA SINICA, 2019, 40 (03) :374-386
[6]   Prediction of Orthosteric and Allosteric Regulations on Cannabinoid Receptors Using Supervised Machine Learning Classifiers [J].
Bian, Yuemin ;
Jing, Yankang ;
Wang, Lirong ;
Ma, Shifan ;
Jun, Jaden Jungho ;
Xie, Xiang-Qun .
MOLECULAR PHARMACEUTICS, 2019, 16 (06) :2605-2615
[7]   Computational Fragment-Based Drug Design: Current Trends, Strategies, and Applications [J].
Bian, Yuemin ;
Xie, Xiang-Qun .
AAPS JOURNAL, 2018, 20 (03)
[8]   Integrated In Silico Fragment-Based Drug Design: Case Study with Allosteric Modulators on Metabotropic Glutamate Receptor 5 [J].
Bian, Yuemin ;
Feng, Zhiwei ;
Yang, Peng ;
Xie, Xiang-Qun .
AAPS JOURNAL, 2017, 19 (04) :1235-1248
[9]   The heptahelical domain of GABAB2 is activated directly by CGP7930, a positive allosteric modulator of the GABAB receptor [J].
Binet, V ;
Brajon, C ;
Le Corre, L ;
Acher, F ;
Pin, JP ;
Prézeau, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (28) :29085-29091
[10]  
Blundell TL, 1996, NATURE, V384, P23