A Survey on Knowledge Graph Embedding: Approaches, Applications and Benchmarks

被引:175
作者
Dai, Yuanfei [1 ]
Wang, Shiping [1 ,2 ]
Xiong, Neal N. [1 ,3 ]
Guo, Wenzhong [1 ,2 ]
机构
[1] Fuzhou Univ, Coll Math & Comp Sci, Fuzhou 350108, Peoples R China
[2] Fuzhou Univ, Key Lab Network Comp & Intelligent Informat Proc, Fuzhou 350108, Peoples R China
[3] Northeastern State Univ, Dept Math & Comp Sci, Tahlequah, OK USA
关键词
knowledge graph embedding; knowledge representation; deep learning; statistical relational learning;
D O I
10.3390/electronics9050750
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A knowledge graph (KG), also known as a knowledge base, is a particular kind of network structure in which the node indicates entity and the edge represent relation. However, with the explosion of network volume, the problem of data sparsity that causes large-scale KG systems to calculate and manage difficultly has become more significant. For alleviating the issue, knowledge graph embedding is proposed to embed entities and relations in a KG to a low-, dense and continuous feature space, and endow the yield model with abilities of knowledge inference and fusion. In recent years, many researchers have poured much attention in this approach, and we will systematically introduce the existing state-of-the-art approaches and a variety of applications that benefit from these methods in this paper. In addition, we discuss future prospects for the development of techniques and application trends. Specifically, we first introduce the embedding models that only leverage the information of observed triplets in the KG. We illustrate the overall framework and specific idea and compare the advantages and disadvantages of such approaches. Next, we introduce the advanced models that utilize additional semantic information to improve the performance of the original methods. We divide the additional information into two categories, including textual descriptions and relation paths. The extension approaches in each category are described, following the same classification criteria as those defined for the triplet fact-based models. We then describe two experiments for comparing the performance of listed methods and mention some broader domain tasks such as question answering, recommender systems, and so forth. Finally, we collect several hurdles that need to be overcome and provide a few future research directions for knowledge graph embedding.
引用
收藏
页数:29
相关论文
共 100 条
[1]   Large-scale structural and textual similarity-based mining of knowledge graph to predict drug-drug interactions [J].
Abdelaziz, Ibrahim ;
Fokoue, Achille ;
Hassanzadeh, Oktie ;
Zhang, Ping ;
Sadoghi, Mohammad .
JOURNAL OF WEB SEMANTICS, 2017, 44 :104-117
[2]  
An B., 2018, P 2018 C N AM CHAPT, P745
[3]  
[Anonymous], 1985, HERBERT ROBBINS SELE, DOI DOI 10.1007/978-1-4612-5110-1_9
[4]  
[Anonymous], 2002, AAAI 2002 WORKSH ONT
[5]  
[Anonymous], 2015, TRANSA ADAPTIVE APPR
[6]  
[Anonymous], 2018, NEURAL INFORM PROCES
[7]  
[Anonymous], 1988, The fast Fourier transform and its applications
[8]  
[Anonymous], 2011, P 28 INT C INT C MAC
[9]  
[Anonymous], 2015, P 2015 INT C LEARN R
[10]  
[Anonymous], 2013, P INT C COMP LEARN R