Rearrangements in Carnot Groups

被引:2
作者
Manfredi, Juan J. [1 ]
Vera de Serio, Virginia N. [2 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[2] Univ Nacl Cuyo, Fac Ciencias Econ, RA-5500 Mendoza, Argentina
关键词
Symmetrization; rearrangements; Carnot groups;
D O I
10.1007/s10114-019-8271-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we extend the notion of rearrangement of nonnegative functions to the setting of Carnot groups. We define rearrangement with respect to a given family of anisotropic balls B-r, or equivalently with respect to a gauge x and prove basic regularity properties of this construction. If u is a bounded nonnegative real function with compact support, we denote by u* its rearrangement. Then, the radial function u* is of bounded variation. In addition, if u is continuous then u* is continuous, and if u belongs to the horizontal Sobolev space Wh where p 1.
引用
收藏
页码:1115 / 1127
页数:13
相关论文
共 20 条
[1]  
Baernstein A., 2019, Symmetrization in analysis
[2]  
Capogna L., 2007, PROGR MATH
[3]   The Moser-Trudinger inequality in unbounded domains of Heisenberg group and sub-elliptic equations [J].
Cohn, William S. ;
Nguyen Lam ;
Lu, Guozhen ;
Yang, Yunyan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (12) :4483-4495
[4]  
Folland GB., 1982, HARDY SPACES HOMOGEN
[5]   SOBOLEV AND ISOPERIMETRIC-INEQUALITIES FOR DEGENERATE METRICS [J].
FRANCHI, B ;
GALLOT, S ;
WHEEDEN, RL .
MATHEMATISCHE ANNALEN, 1994, 300 (04) :557-571
[6]   HIGHER-ORDER COMPACT EMBEDDINGS OF FUNCTION SPACES ON CARNOT-CARATHEODORY SPACES [J].
Francu, Martin .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2018, 12 (04) :970-994
[7]   Higher-order Sobolev-type embeddings on Carnot-Caratheodory spaces [J].
Francu, Martin .
MATHEMATISCHE NACHRICHTEN, 2017, 290 (07) :1033-1052
[8]  
Garofalo N, 1996, COMMUN PUR APPL MATH, V49, P1081, DOI 10.1002/(SICI)1097-0312(199610)49:10<1081::AID-CPA3>3.0.CO
[9]  
2-A
[10]  
Lam N, 2015, THESIS