Deblurring and Sparse Unmixing for Hyperspectral Images

被引:141
作者
Zhao, Xi-Le [1 ]
Wang, Fan [2 ]
Huang, Ting-Zhu [1 ]
Ng, Michael K. [3 ]
Plemmons, Robert J. [4 ,5 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 610054, Peoples R China
[2] Lanzhou Univ, Dept Math & Stat, Lanzhou 730000, Peoples R China
[3] Hong Kong Baptist Univ, Ctr Math Imaging & Vis, Kowloon Tong, Hong Kong, Peoples R China
[4] Wake Forest Univ, Dept Comp Sci, Winston Salem, NC 27106 USA
[5] Wake Forest Univ, Dept Math, Winston Salem, NC 27106 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2013年 / 51卷 / 07期
基金
中国国家自然科学基金;
关键词
Alternating direction methods; deblurring; hyperspectral imaging; linear spectral unmixing; total variation (TV); ALGORITHM; SEGMENTATION; MODELS;
D O I
10.1109/TGRS.2012.2227764
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The main aim of this paper is to study total variation (TV) regularization in deblurring and sparse unmixing of hyperspectral images. In the model, we also incorporate blurring operators for dealing with blurring effects, particularly blurring operators for hyperspectral imaging whose point spread functions are generally system dependent and formed from axial optical aberrations in the acquisition system. An alternating direction method is developed to solve the resulting optimization problem efficiently. According to the structure of the TV regularization and sparse unmixing in the model, the convergence of the alternating direction method can be guaranteed. Experimental results are reported to demonstrate the effectiveness of the TV and sparsity model and the efficiency of the proposed numerical scheme, and the method is compared to the recent Sparse Unmixing via variable Splitting Augmented Lagrangian and TV method by Iordache et al.
引用
收藏
页码:4045 / 4058
页数:14
相关论文
共 39 条
[1]  
Abercromby K., 2006, COMMUNICATION NASA J
[2]   Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Dobigeon, Nicolas ;
Parente, Mario ;
Du, Qian ;
Gader, Paul ;
Chanussot, Jocelyn .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) :354-379
[3]   A VARIABLE SPLITTING AUGMENTED LAGRANGIAN APPROACH TO LINEAR SPECTRAL UNMIXING [J].
Bioucas-Dias, Jose M. .
2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING, 2009, :1-4
[4]   Hyperspectral subspace identification [J].
Bioucas-Dias, Jose M. ;
Nascimento, Jose M. P. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (08) :2435-2445
[5]  
Blake T., 2006, P AMOS TECH C, pE1
[6]  
Blake T., 2005, P AMOS TECH C MAUI
[7]  
Chang C.I., 2003, Hyperspectral Imaging: Techniques for Spectral Detection and Classification, V1
[8]   An Empirical Identification Method of Gaussian Blur Parameter for Image Deblurring [J].
Chen, Fen ;
Ma, Jianglin .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (07) :2467-2478
[9]  
Dias JM, 2010, INVESTIGACAO, P1, DOI 10.14195/978-989-26-0193-9
[10]   ON THE DOUGLAS-RACHFORD SPLITTING METHOD AND THE PROXIMAL POINT ALGORITHM FOR MAXIMAL MONOTONE-OPERATORS [J].
ECKSTEIN, J ;
BERTSEKAS, DP .
MATHEMATICAL PROGRAMMING, 1992, 55 (03) :293-318