A well-posed Cauchy problem for an evolution equation with coefficients of low regularity

被引:5
作者
Cicognani, Massimo [1 ]
Colombini, Ferruccio [2 ]
机构
[1] Univ Bologna, Dipartimento Matemat, I-40126 Bologna, Italy
[2] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
关键词
Evolution equations; Hyperbolic equations; Schrodinger equation; Cauchy problem; HYPERBOLIC-EQUATIONS;
D O I
10.1016/j.jde.2013.01.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the hyperbolic Cauchy problem, the well-posedness in Sobolev spaces is strictly related to the modulus of continuity of the coefficients. This holds true for p-evolution equations with real characteristics (p = 1 hyperbolic equations, p = 2 vibrating plate and Schrodinger type models, ...). We show that, for p >= 2, a lack of regularity in t can be balanced by a damping of the too fast oscillations as the space variable x -> infinity. This cannot happen in the hyperbolic case p = 1 because of the finite speed of propagation. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:3573 / 3595
页数:23
相关论文
共 19 条
[1]   Well-posedness of the Cauchy problem for p-evolution equations [J].
Ascanelli, Alessia ;
Boiti, Chiara ;
Zanghirati, Luisa .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (10) :2765-2795
[2]   The global Cauchy problem for a vibrating beam equation [J].
Ascanelli, Alessia ;
Cicognani, Massimo ;
Colombini, Ferruccio .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (05) :1440-1451
[3]  
Cicognani M., 2012, PROGR MATH, V301, P53
[4]  
Cicognani M., 2003, DIFFERENTIAL INTEGRA, V16, P1321
[5]   Loss of regularity for p-evolution type models [J].
Cicognani, Massimo ;
Hirosawa, Fumihiko ;
Reissigc, Michael .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 347 (01) :35-58
[6]  
Cicognani M, 2004, DIFFER INTEGRAL EQU, V17, P1079
[7]   On Schrodinger type evolution equations with non-Lipschitz coefficients [J].
Cicognani, Massimo ;
Reissig, Michael .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2011, 190 (04) :645-665
[8]  
Cicognani M, 2010, T AM MATH SOC, V362, P4853
[9]   The Log-effect for p-evolution type models [J].
Cicognani, Massimo ;
Hirosawa, Fumihiko ;
Reissig, Michael .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2008, 60 (03) :819-863
[10]   HYPERBOLIC OPERATORS WITH NON-LIPSCHITZ COEFFICIENTS [J].
COLOMBINI, F ;
LERNER, N .
DUKE MATHEMATICAL JOURNAL, 1995, 77 (03) :657-698