Modeling the Gravitational Potential of a Nonspherical Asteroid

被引:45
作者
Herrera-Sucarrat, E. [1 ]
Palmer, P. L. [2 ]
Roberts, R. M. [3 ]
机构
[1] Univ Surrey, Surrey Space Ctr, Dept Math, Guildford GU2 7XH, England
[2] Univ Surrey, Surrey Space Ctr, Guildford GU2 7XH, England
[3] Univ Surrey, Dept Math, Guildford GU2 7XH, England
关键词
ROTATING; 2ND-DEGREE; ORBITS; STABILITY; GRAVITY; MOTION;
D O I
10.2514/1.58140
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
In this paper a simple and very general approximation of the gravitational potential for a nonspherical body is presented. The gravitational potential is expanded using spherical harmonics and spherical Bessel functions, and it satisfies Laplace's equation outside the circumscribing sphere and Poisson's equation inside the circumscribing sphere. Therefore, trajectories can be integrated near the surface of the asteroid, as well as far away from it. This paper focuses on the construction of a simple expansion of the gravitational potential that preserves the critical nonlinear dynamical behavior of other gravitational models for a nonspherical asteroid that are more complex and computationally more demanding.
引用
收藏
页码:790 / 798
页数:9
相关论文
共 20 条
[1]   A CONSERVATIVE NUMERICAL TECHNIQUE FOR COLLISIONLESS DYNAMIC-SYSTEMS - COMPARISON OF THE RADIAL AND CIRCULAR ORBIT INSTABILITIES [J].
ALLEN, AJ ;
PALMER, PL ;
PAPALOIZOU, J .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1990, 242 (04) :576-594
[2]  
CHAUVINEAU B, 1994, ASTR SOC P, V63, P45
[3]   PLANAR ORBITS ABOUT A TRIAXIAL BODY - APPLICATION TO ASTEROIDAL SATELLITES [J].
CHAUVINEAU, B ;
FARINELLA, P ;
MIGNARD, F .
ICARUS, 1993, 105 (02) :370-384
[4]  
Cheng A.F., 2002, ASTEROIDS 3, P351, DOI DOI 10.2514/6.1993-4089
[5]  
Danby J. M. A., 1962, FUNDAMENTALS CELESTI, P100
[6]   Erosion and ejecta reaccretion on 243 Ida and its moon [J].
Geissler, P ;
Petit, JM ;
Durda, DD ;
Greenberg, R ;
Bottke, W ;
Nolan, M .
ICARUS, 1996, 120 (01) :140-157
[7]   Nonlinear stability of the Lagrangian libration points in the Chermnykh problem [J].
Gozdziewski, K ;
Maciejewski, AJ .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1998, 70 (01) :41-58
[8]  
Heiskanen W.A., 1967, PHYS GEODESY, P3
[9]   Numerical determination of stability regions for orbital motion in uniformly rotating second degree and order gravity fields [J].
Hu, W ;
Scheeres, DJ .
PLANETARY AND SPACE SCIENCE, 2004, 52 (08) :685-692
[10]   Spacecraft motion about slowly rotating asteroids [J].
Hu, W ;
Scheeres, DJ .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2002, 25 (04) :765-775