Ultrafast Infrared Spectroscopy of Riboflavin: Dynamics, Electronic Structure, and Vibrational Mode Analysis

被引:76
作者
Wolf, Matthias M. N. [1 ]
Schumann, Christian [1 ]
Gross, Ruth [1 ]
Domratcheva, Tatiana [1 ]
Diller, Rolf [1 ]
机构
[1] TU Kaiserslautern, Fachbereich Phys, D-67663 Kaiserslautern, Germany
关键词
D O I
10.1021/jp804231c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ferntosecond time-resolved infrared spectroscopy was used to study the vibrational response of riboflavin in DMSO to photoexcitation at 387 nm. Vibrational cooling in the excited electronic state is observed and characterized by a time constant of 4.0 +/- 0.1 ps. Its characteristic pattern of negative and positive IR difference signals allows the identification and determination of excited-state vibrational frequencies of riboflavin in the spectral region between 1100 and 1740 cm(-1). Density functional theory (B3LYP), Hartree-Fock (HF) and configuration interaction singles (CIS) methods were employed to calculate the vibrational spectra of the electronic ground state and the first singlet excited pi pi* state as well as respective electronic energies, structural parameters, electronic dipole moments and intrinsic force constants. The harmonic frequencies of the S, excited state calculated by the CIS method are in satisfactory agreement with the observed band positions. There is a clear correspondence between computed ground- and excited-state vibrations. Major changes upon photoexcitation include the loss of the double bond between the C4a and N5 atoms, reflected in a downshift of related vibrations in the spectral region from 1450 to 1720 cm(-1). Furthermore, the vibrational analysis reveals intra- and intermolecular hydrogen bonding of the riboflavin chromophore.
引用
收藏
页码:13424 / 13432
页数:9
相关论文
共 44 条
[1]   INFRARED-SPECTRA AND MOLECULAR ASSOCIATION OF LUMIFLAVIN AND RIBOFLAVIN DERIVATIVES [J].
ABE, M ;
KYOGOKU, Y ;
KITAGAWA, T ;
KAWANO, K ;
OHISHI, N ;
TAKAISUZUKI, A ;
YAGI, K .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 1986, 42 (09) :1059-1068
[2]   VIBRATIONAL ANALYSIS OF FLAVIN DERIVATIVES - NORMAL COORDINATE TREATMENTS OF LUMIFLAVIN [J].
ABE, M ;
KYOGOKU, Y .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 1987, 43 (08) :1027-1037
[3]   A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome [J].
Berndt, Alex ;
Kottke, Tilman ;
Breitkreuz, Helena ;
Dvorsky, Radovan ;
Hennig, Sven ;
Alexander, Michael ;
Wolf, Eva .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (17) :13011-13021
[4]   Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states [J].
Bouly, Jean-Pierre ;
Schleicher, Erik ;
Dionisio-Sese, Maribel ;
Vandenbussche, Fillip ;
Van Der Straeten, Dominique ;
Bakrim, Nadia ;
Meier, Stefan ;
Batschauer, Alfred ;
Galland, Paul ;
Bittl, Robert ;
Ahmad, Margaret .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (13) :9383-9391
[5]   NORMAL MODE ANALYSIS OF LUMIFLAVIN AND INTERPRETATION OF RESONANCE RAMAN-SPECTRA OF FLAVOPROTEINS [J].
BOWMAN, WD ;
SPIRO, TG .
BIOCHEMISTRY, 1981, 20 (11) :3313-3318
[6]  
CAMPOS MM, 1994, VIB SPECTROSC, V6, P173
[7]   Theoretical insight into the spectroscopy and photochemistry of isoalloxazine, the flavin core ring [J].
Climent, Teresa ;
Gonzalez-Luque, Remedios ;
Merchan, Manuela ;
Serrano-Andres, Luis .
JOURNAL OF PHYSICAL CHEMISTRY A, 2006, 110 (50) :13584-13590
[8]   ULTRAVIOLET RESONANCE RAMAN-SPECTROSCOPY OF FLAVIN MONONUCLEOTIDE AND FLAVIN ADENINE-DINUCLEOTIDE [J].
COPELAND, RA ;
SPIRO, TG .
JOURNAL OF PHYSICAL CHEMISTRY, 1986, 90 (25) :6648-6654
[9]   Molecular models predict light-induced glutamine tautomerization in BLUF photoreceptors [J].
Domratcheva, Tatiana ;
Grigorenko, Bella L. ;
Schlichting, Ilme ;
Nemukhin, Alexander V. .
BIOPHYSICAL JOURNAL, 2008, 94 (10) :3872-3879
[10]   Fluoresence quenching of riboflavin in aqueous solution by methionin and cystein [J].
Drössler, P ;
Holzer, W ;
Penzkofer, A ;
Hegemann, P .
CHEMICAL PHYSICS, 2003, 286 (2-3) :409-420