Muckenhoupt inequality with three measures and applications to Sobolev orthogonal polynomials

被引:4
作者
Colorado, E. [1 ]
Pestana, D. [1 ]
Rodriguez, J. M. [1 ]
Romera, E. [1 ]
机构
[1] Univ Carlos III Madrid, Dept Matemat, Madrid 28911, Spain
关键词
Muckenhoupt inequality; Multiplication operator; Zero location; Weight; Sobolev orthogonal polynomials; Weighted Sobolev spaces; EXTREMAL POLYNOMIALS; ZERO LOCATION; SPACES; RESPECT;
D O I
10.1016/j.jmaa.2013.05.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalize the Muckenhoupt inequality with two measures to three under certain conditions. As a consequence, we prove a very simple characterization of the boundedness of the multiplication operator and thus of the boundedness of the zeros and the asymptotic behavior of the Sobolev orthogonal polynomials, for a large class of measures which includes the most usual examples in the literature. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:369 / 386
页数:18
相关论文
共 25 条
[1]  
Adams R., 2003, SOBOLEV SPACES
[2]   Weighted Sobolev spaces on curves [J].
Alvarez, V ;
Pestana, D ;
Rodríguez, JM ;
Romera, E .
JOURNAL OF APPROXIMATION THEORY, 2002, 119 (01) :41-85
[3]   Boundedness properties for Sobolev inner products [J].
Castro, M ;
Durán, AJ .
JOURNAL OF APPROXIMATION THEORY, 2003, 122 (01) :97-111
[4]   THE UNCERTAINTY PRINCIPLE [J].
FEFFERMAN, CL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 9 (02) :129-206
[5]  
Garcia-Cuerva J., 1985, North-Holland Mathematics Studies, V116
[6]  
Heinonen J., 1993, Oxford Mathematical Monographs
[7]  
Heisenberg W., 1927, Z PHYS, V43, P172, DOI [10.1007/bf01397280, DOI 10.1007/BF01397280]
[8]   ON POLYNOMIALS ORTHOGONAL WITH RESPECT TO CERTAIN SOBOLEV INNER PRODUCTS [J].
ISERLES, A ;
KOCH, PE ;
NORSETT, SP ;
SANZSERNA, JM .
JOURNAL OF APPROXIMATION THEORY, 1991, 65 (02) :151-175
[9]  
Iserles A., 1990, ALGORITHMS APPROXIMA
[10]  
Kufner A., 1980, Teubner-Texte zur Mathematik, V31