A comparison of splines interpolations with standard finite difference methods for one-dimensional advection-diffusion equation

被引:2
|
作者
Thongmoon, Montri [1 ]
Tangmanee, Suwon [1 ]
Mckibbin, Robert [1 ]
机构
[1] Massey Univ, Inst Informat & Math Sci, Auckland, New Zealand
来源
关键词
advection-diffusion equation; cubic spline methods; finite differences (FTCS) method; Crank-Nicolson method;
D O I
10.1142/S0129183108012819
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Four types of numerical methods namely: Natural Cubic Spline, Special A-D Cubic Spline, FTCS and Crank-Nicolson are applied to both advection and diffusion terms of the one-dimensional advection-diffusion equations with constant coefficients. The numerical results from two examples are tested with the known analytical solution. The errors are compared when using different Peclet numbers.
引用
收藏
页码:1291 / 1304
页数:14
相关论文
共 50 条
  • [31] Improvement of the One-dimensional Vertical Advection-diffusion Model in Seawater
    王保栋
    单宝田
    战闰
    王修林
    ChineseJournalofOceanologyandLimnology, 2003, (01) : 34 - 39
  • [32] Improvement of the one-dimensional vertical advection-diffusion model in seawater
    Wang Baodong
    Shan Baotian
    Zhan Run
    Wang Xiulin
    Chinese Journal of Oceanology and Limnology, 2003, 21 (1): : 34 - 39
  • [33] Nodal domain integration model of one-dimensional advection-diffusion
    Hromadka, T. V., II
    Guymon, G. L.
    ADVANCES IN WATER RESOURCES, 1982, 5 (01) : 9 - 16
  • [34] A NOTE ON FINITE DIFFERENCING OF THE ADVECTION-DIFFUSION EQUATION
    CLANCY, RM
    MONTHLY WEATHER REVIEW, 1981, 109 (08) : 1807 - 1809
  • [35] A comparison of a family of Eulerian and semi-Lagrangian finite element methods for the advection-diffusion equation
    Giraldo, FX
    Neta, B
    COMPUTER MODELLING OF SEAS AND COASTAL REGIONS III - COASTAL 97, 1997, : 217 - 229
  • [36] Finite Difference and Spline Approximation for Solving Fractional Stochastic Advection-Diffusion Equation
    Farshid Mirzaee
    Khosro Sayevand
    Shadi Rezaei
    Nasrin Samadyar
    Iranian Journal of Science and Technology, Transactions A: Science, 2021, 45 : 607 - 617
  • [37] ANALYSIS OF A NEW FINITE-DIFFERENCE SCHEME FOR THE LINEAR ADVECTION-DIFFUSION EQUATION
    MICKENS, RE
    JOURNAL OF SOUND AND VIBRATION, 1991, 146 (02) : 342 - 344
  • [38] HIGH-ORDER FINITE DIFFERENCE SCHEMES FOR SOLVING THE ADVECTION-DIFFUSION EQUATION
    Sari, Murat
    Gurarslan, Gurhan
    Zeytinoglu, Asuman
    MATHEMATICAL & COMPUTATIONAL APPLICATIONS, 2010, 15 (03): : 449 - 460
  • [39] High-order finite difference schemes for solving the advection-diffusion equation
    Sari, Murat
    Gürarslan, Gürhan
    Zeytinoǧlu, Asuman
    Mathematical and Computational Applications, 2010, 15 (03) : 449 - 460
  • [40] Finite Difference and Spline Approximation for Solving Fractional Stochastic Advection-Diffusion Equation
    Mirzaee, Farshid
    Sayevand, Khosro
    Rezaei, Shadi
    Samadyar, Nasrin
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2021, 45 (02): : 607 - 617