A comparison of splines interpolations with standard finite difference methods for one-dimensional advection-diffusion equation

被引:2
|
作者
Thongmoon, Montri [1 ]
Tangmanee, Suwon [1 ]
Mckibbin, Robert [1 ]
机构
[1] Massey Univ, Inst Informat & Math Sci, Auckland, New Zealand
来源
关键词
advection-diffusion equation; cubic spline methods; finite differences (FTCS) method; Crank-Nicolson method;
D O I
10.1142/S0129183108012819
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Four types of numerical methods namely: Natural Cubic Spline, Special A-D Cubic Spline, FTCS and Crank-Nicolson are applied to both advection and diffusion terms of the one-dimensional advection-diffusion equations with constant coefficients. The numerical results from two examples are tested with the known analytical solution. The errors are compared when using different Peclet numbers.
引用
收藏
页码:1291 / 1304
页数:14
相关论文
共 50 条
  • [21] One-dimensional surrogate models for advection-diffusion problems
    Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano
    I-20133, Italy
    不详
    I-20133, Italy
    不详
    GA
    30322, United States
    Lect. Notes Comput. Sci. Eng., (447-455):
  • [22] Taylor-Galerkin B-Spline Finite Element Method for the One-Dimensional Advection-Diffusion Equation
    Kadalbajoo, Mohan K.
    Arora, Puneet
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2010, 26 (05) : 1206 - 1223
  • [23] On the stability of explicit finite difference methods for advection-diffusion equations
    Zeng, Xianyi
    Hasan, Md Mahmudul
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (01) : 421 - 446
  • [24] Generalized Fourier analyses of the advection-diffusion equation - Part I: one-dimensional domains
    Christon, MA
    Martinez, MJ
    Voth, TE
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2004, 45 (08) : 839 - 887
  • [25] Solving the random Cauchy one-dimensional advection-diffusion equation: Numerical analysis and computing
    Cortes, J. -C.
    Navarro-Quiles, A.
    Romero, J. -V.
    Rosello, M. -D.
    Sohaly, M. A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 330 : 920 - 936
  • [26] Analysis of One-Dimensional Advection-Diffusion Problems Using Finite Element Methods with Spherical Hankel Shape Functions
    Ziaadini-Dashtekhaki, Maryam
    Ghaeini-Hessaroeyeh, Mahnaz
    Hamzehei-Javaran, Saleh
    INTERNATIONAL JOURNAL OF CIVIL ENGINEERING, 2024, : 885 - 894
  • [27] Application of the generalized finite difference method to solve the advection-diffusion equation
    Urena Prieto, Francisco
    Benito Munoz, Juan Jose
    Gavete Corvinos, Luis
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (07) : 1849 - 1855
  • [28] Implicit finite difference techniques for the advection-diffusion equation using spreadsheets
    Karahan, Halil
    ADVANCES IN ENGINEERING SOFTWARE, 2006, 37 (09) : 601 - 608
  • [30] A simple but accurate explicit finite difference method for the advection-diffusion equation
    Sanjaya, Febi
    Mungkasi, Sudi
    INTERNATIONAL CONFERENCE ON SCIENCE AND APPLIED SCIENCE 2017, 2017, 909