A comparison of splines interpolations with standard finite difference methods for one-dimensional advection-diffusion equation

被引:2
|
作者
Thongmoon, Montri [1 ]
Tangmanee, Suwon [1 ]
Mckibbin, Robert [1 ]
机构
[1] Massey Univ, Inst Informat & Math Sci, Auckland, New Zealand
来源
关键词
advection-diffusion equation; cubic spline methods; finite differences (FTCS) method; Crank-Nicolson method;
D O I
10.1142/S0129183108012819
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Four types of numerical methods namely: Natural Cubic Spline, Special A-D Cubic Spline, FTCS and Crank-Nicolson are applied to both advection and diffusion terms of the one-dimensional advection-diffusion equations with constant coefficients. The numerical results from two examples are tested with the known analytical solution. The errors are compared when using different Peclet numbers.
引用
收藏
页码:1291 / 1304
页数:14
相关论文
共 50 条
  • [1] Weighted finite difference techniques for the one-dimensional advection-diffusion equation
    Dehghan, M
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 147 (02) : 307 - 319
  • [2] Explicit Finite Difference Methods for the Solution of the One Dimensional Time Fractional Advection-Diffusion Equation
    Al-Shibani, F. S.
    Ismail, A. I. Md
    Abdullah, F. A.
    PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): GERMINATION OF MATHEMATICAL SCIENCES EDUCATION AND RESEARCH TOWARDS GLOBAL SUSTAINABILITY, 2014, 1605 : 380 - 385
  • [3] One-dimensional linear advection-diffusion equation: Analytical and finite element solutions
    Mojtabi, Abdelkader
    Deville, Michel O.
    COMPUTERS & FLUIDS, 2015, 107 : 189 - 195
  • [4] Finite difference solution of the one-dimensional advection-diffusion equation with variable coefficients in semi-infinite media
    Savovic, Svetislav
    Djordjevich, Alexandar
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2012, 55 (15-16) : 4291 - 4294
  • [5] Deep learning solver for solving advection-diffusion equation in comparison to finite difference methods
    Salman, Ahmed Khan
    Pouyaei, Arman
    Choi, Yunsoo
    Lops, Yannic
    Sayeed, Alqamah
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 115
  • [6] Analytical solutions of one-dimensional advection-diffusion equation with variable coefficients in a finite domain
    Kumar, Atul
    Jaiswal, Dilip Kumar
    Kumar, Naveen
    JOURNAL OF EARTH SYSTEM SCIENCE, 2009, 118 (05) : 539 - 549
  • [7] Analytical solutions of one-dimensional advection-diffusion equation with variable coefficients in a finite domain
    Atul Kumar
    Dilip Kumar Jaiswal
    Naveen Kumar
    Journal of Earth System Science, 2009, 118 : 539 - 549
  • [8] The numerical solution of the one-dimensional advection-diffusion equation in layered coordinates
    Dewar, WK
    McDougall, TJ
    MONTHLY WEATHER REVIEW, 2000, 128 (07) : 2575 - 2587
  • [9] Two quantum algorithms for solving the one-dimensional advection-diffusion equation
    Ingelmann, Julia
    Bharadwaj, Sachin S.
    Pfeffer, Philipp
    Sreenivasan, Katepalli R.
    Schumacher, Joerg
    COMPUTERS & FLUIDS, 2024, 281
  • [10] FINITE-DIFFERENCE APPROXIMATIONS TO THE ADVECTION-DIFFUSION EQUATION
    WRIGHT, DG
    TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 1992, 44A (03) : 261 - 269