Single-loop multiple-pulse nonadiabatic holonomic quantum gates

被引:90
作者
Herterich, Emmi [1 ]
Sjoqvist, Erik [1 ]
机构
[1] Uppsala Univ, Dept Phys & Astron, Box 516, SE-75120 Uppsala, Sweden
基金
瑞典研究理事会;
关键词
DECOHERENCE-FREE SUBSPACES; EXPERIMENTAL REALIZATION; GEOMETRIC GATES; SYSTEMS; PHASE;
D O I
10.1103/PhysRevA.94.052310
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Nonadiabatic holonomic quantum computation provides the means to perform fast and robust quantum gates by utilizing the resilience of non-Abelian geometric phases to fluctuations of the path in state space. While the original scheme [E. Sjoqvist et al., New J. Phys. 14, 103035 (2012)] needs two loops in the Grassmann manifold (i.e., the space of computational subspaces of the full state space) to generate an arbitrary holonomic one-qubit gate, we propose single-loop one-qubit gates that constitute an efficient universal set of holonomic gates when combined with an entangling holonomic two-qubit gate. Our one-qubit gate is realized by dividing the loop into path segments, each of which is generated by a Lambda-type Hamiltonian. We demonstrate that two path segments are sufficient to realize arbitrary single-loop holonomic one-qubit gates. We describe how our scheme can be implemented experimentally in a generic atomic system exhibiting a three-level Lambda-coupling structure by utilizing carefully chosen laser pulses.
引用
收藏
页数:6
相关论文
共 30 条
[1]   Experimental realization of non-Abelian non-adiabatic geometric gates [J].
Abdumalikov, A. A., Jr. ;
Fink, J. M. ;
Juliusson, K. ;
Pechal, M. ;
Berger, S. ;
Wallraff, A. ;
Filipp, S. .
NATURE, 2013, 496 (7446) :482-485
[2]   Observation of geometric and dynamical phases by neutron interferometry [J].
Allman, BE ;
Kaiser, H ;
Werner, SA ;
Wagh, AG ;
Rakhecha, VC ;
Summhammer, J .
PHYSICAL REVIEW A, 1997, 56 (06) :4420-4439
[3]   NON-ADIABATIC NON-ABELIAN GEOMETRIC PHASE [J].
ANANDAN, J .
PHYSICS LETTERS A, 1988, 133 (4-5) :171-175
[4]   Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin [J].
Arroyo-Camejo, Silvia ;
Lazariev, Andrii ;
Hell, Stefan W. ;
Balasubramanian, Gopalakrishnan .
NATURE COMMUNICATIONS, 2014, 5
[5]  
Bengtsson I., 2006, GEOMETRY QUANTUM STA
[6]   Observation of geometric phases for mixed states using NMR interferometry [J].
Du, JF ;
Zou, P ;
Shi, MJ ;
Kwek, LC ;
Pan, JW ;
Oh, CH ;
Ekert, A ;
Oi, DKL ;
Ericsson, M .
PHYSICAL REVIEW LETTERS, 2003, 91 (10)
[7]   Experimental Realization of Nonadiabatic Holonomic Quantum Computation [J].
Feng, Guanru ;
Xu, Guofu ;
Long, Guilu .
PHYSICAL REVIEW LETTERS, 2013, 110 (19)
[8]   Realization of a holonomic quantum computer in a chain of three-level systems [J].
Gurkan, Zeynep Nilhan ;
Sjoqvist, Erik .
PHYSICS LETTERS A, 2015, 379 (47-48) :3050-3053
[9]   Robustness of nonadiabatic holonomic gates [J].
Johansson, Markus ;
Sjoqvist, Erik ;
Andersson, L. Mauritz ;
Ericsson, Marie ;
Hessmo, Bjoern ;
Singh, Kuldip ;
Tong, D. M. .
PHYSICAL REVIEW A, 2012, 86 (06)
[10]   Noncyclic geometric changes of quantum states [J].
Kult, David ;
Aberg, Johan ;
Sjoqvist, Erik .
PHYSICAL REVIEW A, 2006, 74 (02)