Median Filtering Forensics Based on Convolutional Neural Networks

被引:304
|
作者
Chen, Jiansheng [1 ]
Kang, Xiangui [1 ]
Liu, Ye [1 ]
Wang, Z. Jane [2 ]
机构
[1] Sun Yat Sen Univ, Sch Informat Sci & Technol, Guangzhou 510006, Guangdong, Peoples R China
[2] Univ British Columbia, Elect & Comp Engn Dept, Vancouver, BC V6T 1Z4, Canada
基金
美国国家科学基金会;
关键词
Convolutional neural networks; deep learning; hierarchical representations; median filtering forensics; TRACES;
D O I
10.1109/LSP.2015.2438008
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Median filtering detection has recently drawn much attention in image editing and image anti-forensic techniques. Current image median filtering forensics algorithms mainly extract features manually. To deal with the challenge of detecting median filtering from small-size and compressed image blocks, by taking into account of the properties of median filtering, we propose a median filtering detection method based on convolutional neural networks (CNNs), which can automatically learn and obtain features directly from the image. To our best knowledge, this is the first work of applying CNNs in median filtering image forensics. Unlike conventional CNN models, the first layer of our CNN framework is a filter layer that accepts an image as the input and outputs its median filtering residual (MFR). Then, via alternating convolutional layers and pooling layers to learn hierarchical representations, we obtain multiple features for further classification. We test the proposed method on several experiments. The results show that the proposed method achieves significant performance improvements, especially in the cut-and-paste forgery detection.
引用
收藏
页码:1849 / 1853
页数:5
相关论文
共 50 条
  • [41] Intelligent Modulation Recognition Based on Neural Networks with Sparse Filtering
    Li R.-D.
    Li L.-Z.
    Li S.-Q.
    Song X.-Y.
    He P.
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2019, 48 (02): : 161 - 167
  • [42] Malware detection approach based on deep convolutional neural networks
    El Merabet, Hoda
    Hajraoui, Abderrahmane
    INTERNATIONAL JOURNAL OF INFORMATION AND COMPUTER SECURITY, 2023, 20 (1-2) : 145 - 157
  • [43] Breast cancer detection: Shallow convolutional neural network against deep convolutional neural networks based approach
    Das, Himanish Shekhar
    Das, Akalpita
    Neog, Anupal
    Mallik, Saurav
    Bora, Kangkana
    Zhao, Zhongming
    FRONTIERS IN GENETICS, 2023, 13
  • [44] A Convolutional Neural Networks based Transportation Mode Identification Algorithm
    Gong Yanyun
    Zhao Fang
    Chen Shaomeng
    Luo Haiyong
    2017 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION (IPIN), 2017,
  • [45] Background subtraction based on deep convolutional neural networks features
    Dou, Jianfang
    Qin, Qin
    Tu, Zimei
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (11) : 14549 - 14571
  • [46] Background subtraction based on deep convolutional neural networks features
    Jianfang Dou
    Qin Qin
    Zimei Tu
    Multimedia Tools and Applications, 2019, 78 : 14549 - 14571
  • [47] A Deep Learning Approach in the Discrete Cosine Transform Domain to Median Filtering Forensics
    Zhang, Jun
    Liao, Yixin
    Zhu, Xinshan
    Wang, Hongquan
    Ding, Jie
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 (27) : 276 - 280
  • [48] Ship classification based on convolutional neural networks
    Li Zhenzhen
    Zhao Baojun
    Tang Linbo
    Li Zhen
    Feng Fan
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (21): : 7343 - 7346
  • [49] GAIT RECOGNITION BASED ON CONVOLUTIONAL NEURAL NETWORKS
    Sokolova, A.
    Konushin, A.
    INTERNATIONAL WORKSHOP PHOTOGRAMMETRIC AND COMPUTER VISION TECHNIQUES FOR VIDEO SURVEILLANCE, BIOMETRICS AND BIOMEDICINE, 2017, 42-2 (W4): : 207 - 212
  • [50] Detection of landslide based on convolutional neural networks
    Zhang, Heng
    Chen, Xiaohu
    Song, Zhizhong
    Zhan, Weijie
    Lei, Huiguang
    2022 8TH INTERNATIONAL CONFERENCE ON HYDRAULIC AND CIVIL ENGINEERING: DEEP SPACE INTELLIGENT DEVELOPMENT AND UTILIZATION FORUM, ICHCE, 2022, : 736 - 739