Learning a Table from a Table with Non-deterministic Information: A Perspective

被引:0
作者
Wu, Mao [1 ]
Yamaguchi, Naoto [1 ]
Nakata, Michinori [2 ]
Sakai, Hiroshi [1 ]
机构
[1] Kyushu Inst Technol, Fac Engn, Kitakyushu, Fukuoka 804, Japan
[2] Josai Int Univ, Fac Management & Informat Sci, Chiba 283, Japan
来源
ADVANCED MACHINE LEARNING TECHNOLOGIES AND APPLICATIONS | 2012年 / 322卷
基金
日本学术振兴会;
关键词
Estimation of actual information; Constraint; Rough sets; Data dependency; Rules; GENERATION; RULES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Rough Non-deterministic Information Analysis (RNIA) is a rough sets-based framework for handling tables with exact and inexact data. In this framework, we have mainly investigated rough sets-based concepts in a table with non-deterministic information and some algorithms. This paper considers perspective on a new issue that how we estimate a table with actual information from a table with non-deterministic information by adding some constraint. This issue in RNIA slightly seems analogous to backpropagation in Neural Networks.
引用
收藏
页码:24 / +
页数:2
相关论文
共 17 条