On the Regularity of the Minimizer of the Electrostatic Born-Infeld Energy

被引:18
作者
Bonheure, Denis [1 ]
Iacopetti, Alessandro [1 ]
机构
[1] Univ Libre Bruxelles, Dept Math, Campus Plaine,CP214 Blvd Triomphe, B-1050 Brussels, Belgium
关键词
SPACELIKE HYPERSURFACES; MEAN-CURVATURE; EQUATIONS;
D O I
10.1007/s00205-018-1331-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the electrostatic Born-Infeld energy integral(RN) (1-root 1-vertical bar del u vertical bar(2)) dx - integral(RN) rho u dx, where rho epsilon L-m(R-N) is an assigned charge density, m epsilon [1, 2(*)], 2(*) := 2N/N+2, N >= 3. We prove that if rho epsilon L-q (R-N) for q > 2N, the unique minimizer u(rho) is of class W-loc(2,2)(R-N). Moreover, if the norm of. is sufficiently small, theminimizer is a weak solution of the associated PDE - div (del u/root 1-vertical bar del u vertical bar(2)) - rho in R-N, (BI) with the boundary condition lim(vertical bar x vertical bar ->infinity) u(x) = 0, and it is of class C-loc(1,alpha) (R-N) for some alpha epsilon (0, 1).
引用
收藏
页码:697 / 725
页数:29
相关论文
共 44 条
[1]  
[Anonymous], 1996, GEOMETRIC MEASURE TH
[2]   Ground state solution for a problem with mean curvature operator in Minkowski space [J].
Azzollini, A. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (04) :2086-2095
[3]  
BARONI P, 2018, DIFF EQUAT, V53, P803, DOI DOI 10.1007/s00526-014-0768-z
[4]   SPACELIKE HYPERSURFACES WITH PRESCRIBED BOUNDARY-VALUES AND MEAN-CURVATURE [J].
BARTNIK, R ;
SIMON, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 87 (01) :131-152
[5]  
Bayard P, 2003, CALC VAR PARTIAL DIF, V18, P1, DOI 10.1007/s00526-002-0178-5
[6]  
Bihari I., 1956, ACTA MATH ACAD SCI H, V7, P81, DOI DOI 10.1007/BF02022967
[7]  
BILDHAUER M, 1940, DIFF EQUAT, V24, P309, DOI DOI 10.1007/s00526-005-0327-8
[8]  
Bonheure D., ARXIV170707517
[9]  
Bonheure D., 2012, REND I MAT U TRIESTE, V44, P259
[10]  
Bonheure D., ARXIV171202114