Uniformity control and ultra-micropore development of tubular carbon membrane for light gas separation

被引:9
作者
Li, Jing-Yi [1 ]
Cheng, Po-Yu [1 ]
Lin, Min-Der [1 ]
Wey, Ming-Yen [1 ]
Tseng, Hui-Hsin [2 ,3 ]
机构
[1] Natl Chung Hsing Univ, Dept Environm Engn, Taichung 402, Taiwan
[2] Chung Shan Med Univ, Sch Occupat Safety & Hlth, Taichung, Taiwan
[3] Chung Shan Med Univ Hosp, Dept Occupat Med, Taichung, Taiwan
关键词
dip-coating; gas separation; membrane preparation; tubular carbon membrane; vacuum-assisted system; MOLECULAR-SIEVE MEMBRANES; DIP-COATING PROCESS; COMPOSITE MEMBRANES; HYDROGEN-PRODUCTION; CO2/N-2; SEPARATION; PORE-SIZE; PERFORMANCE; FABRICATION; H-2; MICROSTRUCTURE;
D O I
10.1002/aic.16226
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Tubular carbon molecular sieve (CMS) membranes have been recognized as a potential module for commercial application due to its high mechanical strength and large surface area. However, the carbon layer uniformity was restricted by substrate texture and dope fluidity when the dip-coating method was used. This study evaluated the influence of various parameters of dip-coating with an integrated vacuum-assisted system, including solvent vaporization rates, vertical immersion/withdrawal velocity, vacuum degree, dope composition, coating cycles on the microstructure, and gas separation performance of CMS membranes. Using vacuum assistance and a low-vaporization solvent minimized the influence of viscosity and gravity on dope fluidity as a result of fast phase inversion. The as-prepared tubular CMS membranes showed enhanced perm-selectivity according to a H-2/N(2)gas selectivity of 8.8, a CO2/N(2)gas selectivity of 6.7, a H(2)permeability of 464 barrer, and a CO(2)permeability of 356 barrer.
引用
收藏
页数:12
相关论文
共 61 条
[21]   Clay supported polyvinyl acetate coated composite membrane by modified dip coating method: Application for the purification of lysozyme from chicken egg white [J].
Jana, Somen ;
Purkait, M. K. ;
Mohanty, Kaustubha .
JOURNAL OF MEMBRANE SCIENCE, 2011, 382 (1-2) :243-251
[22]   Numerical simulation of the dip-coating process with wall effects on the coating film thickness [J].
Javidi, Mahyar ;
Hrymak, Andrew N. .
JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, 2015, 12 (05) :843-853
[23]   Gas separation of pyrolyzed polymeric membranes: Effect of polymer precursor and pyrolysis conditions [J].
Jung, Chul Ho ;
Kim, Gun Wook ;
Han, Sang Hoon ;
Lee, Young Moo .
MACROMOLECULAR RESEARCH, 2007, 15 (06) :565-574
[24]  
Keshavan H., 2013, U.S. Patent Application, Patent No. [13/630,807, 13630807]
[25]  
Konegger Thomas, 2015, Materials Science Forum, V825-826, P645, DOI 10.4028/www.scientific.net/MSF.825-826.645
[26]   Highly permeable carbon molecular sieve membranes for efficient CO2/N2 separation at ambient and subambient temperatures [J].
Kumar, Rachana ;
Zhang, Chen ;
Itta, Arun K. ;
Koros, Willam J. .
JOURNAL OF MEMBRANE SCIENCE, 2019, 583 :9-15
[27]   Gas permeation properties of carbon molecular sieving membranes derived from the polymer blend of polyphenylene oxide (PPO)/polyvinylpyrrolidone (PVP) [J].
Lee, Hong-Joo ;
Suda, Hiroyuki ;
Haraya, Kenji ;
Moon, Seung-Hyeon .
JOURNAL OF MEMBRANE SCIENCE, 2007, 296 (1-2) :139-146
[28]   Thin carbon/SAPO-34 microporous composite membranes for gas separation [J].
Li, Gang ;
Yang, Jianhua ;
Wang, Jinqu ;
Xiao, Wei ;
Zhou, Liang ;
Zhang, Yan ;
Lu, Jinming ;
Yin, Dehong .
JOURNAL OF MEMBRANE SCIENCE, 2011, 374 (1-2) :83-92
[29]   Inorganic microporous membranes for H2 and CO2 separation-Review of experimental and modeling progress [J].
Li, H. ;
Haas-Santo, K. ;
Schygulla, U. ;
Dittmeyer, R. .
CHEMICAL ENGINEERING SCIENCE, 2015, 127 :401-417
[30]   Tuning thermal expansion behavior and surface roughness of tubular Al2O3 substrates for fabricating high-performance carbon molecular sieving membranes for H2 separation [J].
Li, Jing-Yi ;
Tseng, Hui-Hsin ;
Wey, Ming-Yen .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (45) :24746-24758