A deterministic sparse FFT for functions with structured Fourier sparsity

被引:13
作者
Bittens, Sina [1 ]
Zhang, Ruochuan [2 ]
Iwen, Mark A. [2 ,3 ]
机构
[1] Univ Gottingen, Inst Numer & Appl Math, Lotzestr 16-18, D-37083 Gottingen, Germany
[2] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[3] Michigan State Univ, Dept Computat Math Sci & Engn CMSE, E Lansing, MI 48824 USA
关键词
Sparse Fourier transform (SFT); Structured sparsity; Deterministic constructions; Approximation algorithms;
D O I
10.1007/s10444-018-9626-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a deterministic sparse Fourier transform algorithm is presented which breaks the quadratic-in-sparsity runtime bottleneck for a large class of periodic functions exhibiting structured frequency support. These functions include, e.g., the often considered set of block frequency sparse functions of the form f(x) = Sigma(n)(j=1)Sigma(B-1)(k=0) c(omega j)+k(ei()(omega j+k)x), {omega(1), ...,omega(n)} subset of (-inverted right perpendicular N/2 inverted left perpendicular, right perpendicular N/2 left perpendicular]boolean AND Z as a simple subclass. Theoretical error bounds in combination with numerical experiments demonstrate that the newly proposed algorithms are both fast and robust to noise. In particular, they outperform standard sparse Fourier transforms in the rapid recovery of block frequency sparse functions of the type above.
引用
收藏
页码:519 / 561
页数:43
相关论文
共 49 条
  • [1] Proving hard-core predicates using list decoding
    Akavia, A
    Goldwasser, S
    Safra, S
    [J]. 44TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2003, : 146 - 157
  • [2] Akavia A., 2010, PROC COLT, P381
  • [3] ON THE DESIGN OF DETERMINISTIC MATRICES FOR FAST RECOVERY OF FOURIER COMPRESSIBLE FUNCTIONS
    Bailey, J.
    Iwen, M. A.
    Spencer, C. V.
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2012, 33 (01) : 263 - 289
  • [4] BITTENS S, 1972, RES NOTES, V10, P43, DOI DOI 10.1186/S13104-016-2361-3
  • [5] LINEAR FILTERING APPROACH TO COMPUTATION OF DISCRETE FOURIER TRANSFORM
    BLUESTEIN, LI
    [J]. IEEE TRANSACTIONS ON AUDIO AND ELECTROACOUSTICS, 1970, AU18 (04): : 451 - +
  • [6] Boufounos P., 2012, SUBLINEAR FOURIER SA
  • [7] EXPLICIT CONSTRUCTIONS OF RIP MATRICES AND RELATED PROBLEMS
    Bourgain, Jean
    Dilworth, Stephen
    Ford, Kevin
    Konyagin, Sergei
    Kutzarova, Denka
    [J]. DUKE MATHEMATICAL JOURNAL, 2011, 159 (01) : 145 - 185
  • [8] Cevher V., 2017, ARXIV170201286
  • [9] Cheraghchi M., 2016, P 27 ANN ACM SIAM S, P298
  • [10] Choi B., 2016, ARXIV160607407