Overview of new high gain target design for a laser fusion power plant

被引:13
作者
Bodner, SE
Colombant, DG
Schmitt, AJ
Gardner, JH
Lehmberg, RH
Obenschain, SP
机构
[1] USN, Res Lab, Div Plasma Phys, Washington, DC 20375 USA
[2] USN, Res Lab, Computat Phys & Fluid Dynam Lab, Washington, DC 20375 USA
关键词
laser fusion; target design; power plant;
D O I
10.1016/S0920-3796(01)00600-7
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
We have developed a new direct-drive target design that has a predicted energy gain of 127 using a 1.3 MJ KrF laser, and a gain of 155 using 3.1 MJ. The DT fuel is surrounded by an ablator consisting of a low density CH foam filled with frozen DT. The ablator is then surrounded by a thin CH coating and a very thin high-Z overcoat. The energy gain of 127-155 is possible through the use of (1) direct-drive laser-target coupling; (2) controlled levels of radiative preheating that keeps the DT fuel on a low isentrope (3) a short 1/4 mum laser wavelength for maximum absorption and rocket efficiencies; (4) reduction of the laser beam focal spot size during the implosion (zooming) so that the focal spot size better matches the imploding target size; and (5) ISI optical smoothing to minimize the laser nonuniformities at both high and low mode numbers. In addition to its high energy gain, this target design has several other attractive features: a low target fabrication cost; the potential for a modest-size 300 MWe power plant; the physical strength to withstand the acceleration into the chamber; and a high infrared albedo to better protect the target from preheating during the injection into the chamber. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:93 / 98
页数:6
相关论文
共 13 条
[1]  
Bodner S E., 1901, Phys. Plasmas, V5, P1998, DOI [10.1063/1.872861, DOI 10.1063/1.872861]
[2]   High-gain direct-drive target design for laser fusion [J].
Bodner, SE ;
Colombant, DG ;
Schmitt, AJ ;
Klapisch, M .
PHYSICS OF PLASMAS, 2000, 7 (06) :2298-2301
[3]   Effects of radiation on direct-drive laser fusion targets [J].
Colombant, DG ;
Bodner, SE ;
Schmitt, AJ ;
Klapisch, M ;
Gardner, JH ;
Aglitskiy, Y ;
Deniz, AV ;
Obenschain, SP ;
Pawley, CJ ;
Serlin, V ;
Weaver, JL .
PHYSICS OF PLASMAS, 2000, 7 (05) :2046-2054
[4]  
GARDNER JH, 1935, PHYS PLASMAS, V5, P1998
[5]   DESIGN AND MODELING OF IGNITION TARGETS FOR THE NATIONAL IGNITION FACILITY [J].
HAAN, SW ;
POLLAINE, SM ;
LINDL, JD ;
SUTER, LJ ;
BERGER, RL ;
POWERS, LV ;
ALLEY, WE ;
AMENDT, PA ;
FUTTERMAN, JA ;
LEVEDAHL, WK ;
ROSEN, MD ;
ROWLEY, DP ;
SACKS, RA ;
SHESTAKOV, AI ;
STROBEL, GL ;
TABAK, M ;
WEBER, SV ;
ZIMMERMAN, GB ;
KRAUSER, WJ ;
WILSON, DC ;
COGGESHALL, SV ;
HARRIS, DB ;
HOFFMAN, NM ;
WILDE, BH .
PHYSICS OF PLASMAS, 1995, 2 (06) :2480-2487
[6]   WEAKLY NONLINEAR HYDRODYNAMIC INSTABILITIES IN INERTIAL FUSION [J].
HAAN, SW .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1991, 3 (08) :2349-2355
[7]   USE OF INCOHERENCE TO PRODUCE SMOOTH AND CONTROLLABLE IRRADIATION PROFILES WITH KRF FUSION LASERS [J].
LEHMBERG, RH ;
GOLDHAR, J .
FUSION TECHNOLOGY, 1987, 11 (03) :532-541
[8]   The Nike KrF laser facility: Performance and initial target experiments [J].
Obenschain, SP ;
Bodner, SE ;
Colombant, D ;
Gerber, K ;
Lehmberg, RH ;
McLean, EA ;
Mostovych, AN ;
Pronko, MS ;
Pawley, CJ ;
Schmitt, AJ ;
Sethian, JD ;
Serlin, V ;
Stamper, JA ;
Sullivan, CA ;
Dahlburg, JP ;
Gardner, JH ;
Chan, Y ;
Deniz, AV ;
Hardgrove, J ;
Lehecka, T ;
Klapisch, M .
PHYSICS OF PLASMAS, 1996, 3 (05) :2098-2107
[9]   Observation of Rayleigh-Taylor growth to short wavelengths on Nike [J].
Pawley, CJ ;
Bodner, SE ;
Dahlburg, JP ;
Obenschain, SP ;
Schmitt, AJ ;
Sethian, JD ;
Sullivan, CA ;
Gardner, JH ;
Aglitskiy, Y ;
Chan, Y ;
Lehecka, T .
PHYSICS OF PLASMAS, 1999, 6 (02) :565-570
[10]   Self-consistent analytical model of the Rayleigh-Taylor instability in inertial confinement fusion [J].
Sanz, J .
PHYSICAL REVIEW E, 1996, 53 (04) :4026-4045