Geometric Unification of the Fundamental Interactions

被引:0
作者
Camargo, Disrael [1 ]
Da Cunha, Neves [1 ]
机构
[1] Univ Brasilia UnB, Inst Fis, BR-70919970 Brasilia, DF, Brazil
来源
SIXTH INTERNATIONAL SCHOOL ON FIELD THEORY AND GRAVITATION-2012 | 2012年 / 1483卷
关键词
Kaluza-Klein; Embedding; DIMENSIONS;
D O I
10.1063/1.4756989
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Kaluza-Klein theory is modified, by changing the usual product topology of the total space by the embedding space of the space-time. The Einstein-Hilbert action applied to the higher dimensional space is maintained, but the metric is derived from the embedding. The internal space is not compact as it is generated by the extra dimensions of the embedding space and the isometry group plays the role of the gauge symmetry. It follows from the embedding assumption that the gauge potentials are of geometrical origin, given by the third fundamental form of the embedded space-time. The Lagrangian of the total metric decomposes in the gravitational plus the Yang-Mills plus an interaction term determined by the second fundamental form (or extrinsic curvature). The advantage over the original Kaluza-Klein is that the problem with fermions chirality at the electroweak scale do nor appear and the hierarchy of the fundamental interactions is resolved
引用
收藏
页码:429 / 434
页数:6
相关论文
共 9 条
  • [1] Infinitely large new dimensions
    Arkani-Hamed, N
    Dimopoulos, S
    Dvali, G
    Kaloper, N
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (04) : 586 - 589
  • [2] The hierarchy problem and new dimensions at a millimeter
    Arkani-Hamed, N
    Dimopoulos, S
    Dvali, G
    [J]. PHYSICS LETTERS B, 1998, 429 (3-4) : 263 - 272
  • [3] Eisenhart L. P., 1966, RIEMANNIAN GEOMETRY
  • [4] Holdon B., 1983, ITP744
  • [5] GEOMETRY OF KALUZA-KLEIN THEORY .1. BASIC SETTING
    MAIA, MD
    [J]. PHYSICAL REVIEW D, 1985, 31 (02): : 262 - 267
  • [6] THE IMBEDDING PROBLEM FOR RIEMANNIAN MANIFOLDS
    NASH, J
    [J]. ANNALS OF MATHEMATICS, 1956, 63 (01) : 20 - 63
  • [7] EMBEDDED SPACE-TIME AND PARTICLE SYMMETRIES
    NEEMAN, Y
    [J]. REVIEWS OF MODERN PHYSICS, 1965, 37 (01) : 227 - &
  • [8] Schlafli L., 1873, Ann. di Mat. Pura et Appl. (2nd Ser.), V5, P170
  • [9] [No title captured]