METRADISC-XL: A program for meta-analysis of multidimensional ranked discovery oriented datasets including microarrays

被引:3
作者
Zintzaras, Elias [1 ,2 ]
Ioannidis, John P. A. [3 ]
机构
[1] Univ Thessaly, Sch Med, Dept Biomath, Larisa 41110, Greece
[2] Tufts Univ, Sch Med, Tufts Med Ctr, Inst Clin Res & Hlth Policy Studies, Boston, MA 02111 USA
[3] Stanford Univ, Sch Med, Stanford Prevent Res Ctr, Stanford, CA 94305 USA
关键词
Meta-analysis; Heterogeneity; Rank; Microarrays; High-throughput data; Gene expression; GENE-EXPRESSION; THROUGHPUT; PROTEOMICS; CANCER;
D O I
10.1016/j.cmpb.2012.08.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A comprehensive software for performing meta-analysis of ranked discovery oriented datasets, such as those derived from microarrays or other high throughput technologies, and for testing between-study heterogeneity for biological variables (gene expression, microRNA, proteomic, or other high-dimensional data) is presented. The software can identify biological probes that have either very high average ranks (e.g. consistently over-expressed genes) or very low average ranks (e.g. consistently under-expressed genes). The program tests each probe's average rank and the between-study heterogeneity of the study-specific ranks. Furthermore, it performs heterogeneity analyses restricted to probes with similar average ranks. The program allows both unweighted and weighted analysis. Statistical inferences are based on Monte Carlo permutation tests. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:1243 / 1246
页数:4
相关论文
共 18 条
[1]   Ultrahigh-throughput screening in drop-based microfluidics for directed evolution [J].
Agresti, Jeremy J. ;
Antipov, Eugene ;
Abate, Adam R. ;
Ahn, Keunho ;
Rowat, Amy C. ;
Baret, Jean-Christophe ;
Marquez, Manuel ;
Klibanov, Alexander M. ;
Griffiths, Andrew D. ;
Weitz, David A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (09) :4004-4009
[2]   Biomedical informatics for proteomics [J].
Boguski, MS ;
McIntosh, MW .
NATURE, 2003, 422 (6928) :233-237
[3]   High throughput cellular screens to interrogate the human T and B cell repertoires [J].
Corti, Davide ;
Sallusto, Federica ;
Lanzavecchia, Antonio .
CURRENT OPINION IN IMMUNOLOGY, 2011, 23 (03) :430-435
[4]   Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring [J].
Golub, TR ;
Slonim, DK ;
Tamayo, P ;
Huard, C ;
Gaasenbeek, M ;
Mesirov, JP ;
Coller, H ;
Loh, ML ;
Downing, JR ;
Caligiuri, MA ;
Bloomfield, CD ;
Lander, ES .
SCIENCE, 1999, 286 (5439) :531-537
[5]   On the future of "omics": lipidomics [J].
Griffiths, William J. ;
Ogundare, Michael ;
Williams, Christopher M. ;
Wang, Yuqin .
JOURNAL OF INHERITED METABOLIC DISEASE, 2011, 34 (03) :583-592
[6]   Micrornas: Small RNAs with a big role in gene regulation [J].
He, L ;
Hannon, GJ .
NATURE REVIEWS GENETICS, 2004, 5 (07) :522-531
[7]   The Impact of Omic Technologies on the Study of Food Microbes [J].
O'Flaherty, Sarah ;
Klaenhammer, Todd R. .
ANNUAL REVIEW OF FOOD SCIENCE AND TECHNOLOGY, VOL 2, 2011, 2 :353-371
[8]   Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications [J].
Oezkumur, Emre ;
Needham, James W. ;
Bergstein, David A. ;
Gonzalez, Rodrigo ;
Cabodi, Mario ;
Gershoni, Jonathan M. ;
Goldberg, Bennett B. ;
Uenlue, M. Selim .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (23) :7988-7992
[9]   Key Issues in Conducting a Meta-Analysis of Gene Expression Microarray Datasets [J].
Ramasamy, Adaikalavan ;
Mondry, Adrian ;
Holmes, Chris C. ;
Altman, Douglas G. .
PLOS MEDICINE, 2008, 5 (09) :1320-1332
[10]   ONCOMINE:: A cancer microarray database and integrated data-mining platform [J].
Rhodes, DR ;
Yu, JJ ;
Shanker, K ;
Deshpande, N ;
Varambally, R ;
Ghosh, D ;
Barrette, T ;
Pandey, A ;
Chinnaiyan, AM .
NEOPLASIA, 2004, 6 (01) :1-6