Quantification of Lung Fibrosis and Emphysema in Mice Using Automated Micro-Computed Tomography

被引:92
作者
De langhe, Ellen [1 ,2 ]
Vande Velde, Greetje [3 ]
Hostens, Jeroen [4 ]
Himmelreich, Uwe [3 ]
Nemery, Benoit [5 ]
Luyten, Frank P. [1 ,2 ]
Vanoirbeek, Jeroen [5 ]
Lories, Rik J. [1 ,2 ]
机构
[1] Katholieke Univ Leuven, Dept Dev & Regenerat, Lab Skeletal Dev & Joint Disorders, Louvain, Belgium
[2] Univ Hosp Leuven, Dept Rheumatol, Louvain, Belgium
[3] Katholieke Univ Leuven, Dept Imaging & Pathol, Biomed NMR Unit, MoSAIC, Louvain, Belgium
[4] SkyScan, Kontich, Belgium
[5] Katholieke Univ Leuven, Dept Publ Hlth, Res Unit Lung Toxicol, Louvain, Belgium
关键词
IDIOPATHIC PULMONARY-FIBROSIS; IN-VIVO; MODELS; TISSUE; CT;
D O I
10.1371/journal.pone.0043123
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: In vivo high-resolution micro-computed tomography allows for longitudinal image-based measurements in animal models of lung disease. The combination of repetitive high resolution imaging with fully automated quantitative image analysis in mouse models of lung fibrosis lung benefits preclinical research. This study aimed to develop and validate such an automated micro-computed tomography analysis algorithm for quantification of aerated lung volume in mice; an indicator of pulmonary fibrosis and emphysema severity. Methodology: Mice received an intratracheal instillation of bleomycin (n = 8), elastase (0.25U elastase n = 9, 0.5U elastase n = 8) or saline control (n = 6 for fibrosis, n = 5 for emphysema). A subset of mice was scanned without intervention, to evaluate potential radiation-induced toxicity (n = 4). Some bleomycin-instilled mice were treated with imatinib for proof of concept (n = 8). Mice were scanned weekly, until four weeks after induction, when they underwent pulmonary function testing, lung histology and collagen quantification. Aerated lung volumes were calculated with our automated algorithm. Principal Findings: Our automated image-based aerated lung volume quantification method is reproducible with low intra-subject variability. Bleomycin-treated mice had significantly lower scan-derived aerated lung volumes, compared to controls. Aerated lung volume correlated with the histopathological fibrosis score and total lung collagen content. Inversely, a dose-dependent increase in lung volume was observed in elastase-treated mice. Serial scanning of individual mice is feasible and visualized dynamic disease progression. No radiation-induced toxicity was observed. Three-dimensional images provided critical topographical information. Conclusions: We report on a high resolution in vivo micro-computed tomography image analysis algorithm that runs fully automated and allows quantification of aerated lung volume in mice. This method is reproducible with low inherent measurement variability. We show that it is a reliable quantitative tool to investigate experimental lung fibrosis and emphysema in mice. Its non-invasive nature has the unique benefit to allow dynamic 4D evaluation of disease processes and therapeutic interventions.
引用
收藏
页数:11
相关论文
共 24 条
[1]   Evaluation of micro-CT for emphysema assessment in mice: comparison with non-radiological techniques [J].
Artaechevarria, Xabier ;
Blanco, David ;
de Biurrun, Gabriel ;
Ceresa, Mario ;
Perez-Martin, Daniel ;
Bastarrika, Gorka ;
de Torres, Juan P. ;
Zulueta, Javier J. ;
Montuenga, Luis M. ;
Ortiz-de-Solorzano, Carlos ;
Munoz-Barrutia, Arrate .
EUROPEAN RADIOLOGY, 2011, 21 (05) :954-962
[2]   SIMPLE METHOD OF ESTIMATING SEVERITY OF PULMONARY FIBROSIS ON A NUMERICAL SCALE [J].
ASHCROFT, T ;
SIMPSON, JM ;
TIMBRELL, V .
JOURNAL OF CLINICAL PATHOLOGY, 1988, 41 (04) :467-470
[3]   Dual-energy micro-CT of the rodent lung [J].
Badea, C. T. ;
Guo, X. ;
Clark, D. ;
Johnston, S. M. ;
Marshall, C. D. ;
Piantadosi, C. A. .
AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 2012, 302 (10) :L1088-L1097
[4]  
Bland JM, 1999, STAT METHODS MED RES, V8, P135, DOI 10.1177/096228029900800204
[5]   Guidelines for Assessment of Bone Microstructure in Rodents Using Micro-Computed Tomography [J].
Bouxsein, Mary L. ;
Boyd, Stephen K. ;
Christiansen, Blaine A. ;
Guldberg, Robert E. ;
Jepsen, Karl J. ;
Mueller, Ralph .
JOURNAL OF BONE AND MINERAL RESEARCH, 2010, 25 (07) :1468-1486
[6]   Quantification of bleomycin-induced murine lung damage in vivo with micro-computed tomography [J].
Cavanaugh, Dawn ;
Travis, Elizabeth L. ;
Price, Roger E. ;
Gladish, Gregory ;
White, R. Allen ;
Wang, Min ;
Cody, Dianna D. .
ACADEMIC RADIOLOGY, 2006, 13 (12) :1505-1512
[7]   In vivo characterization of lung morphology and function in anesthetized free-breathing mice using micro-computed tomography [J].
Ford, N. L. ;
Martin, E. L. ;
Lewis, J. F. ;
Veldhuizen, R. A. W. ;
Drangova, M. ;
Holdsworth, D. W. .
JOURNAL OF APPLIED PHYSIOLOGY, 2007, 102 (05) :2046-2055
[8]   Quantification of mouse pulmonary cancer models by microcomputed tomography imaging [J].
Fushiki, Hiroshi ;
Kanoh-Azuma, Tomoko ;
Katoh, Masahiro ;
Kawabata, Ken ;
Jiang, Jian ;
Tsuchiya, Nozomi ;
Satow, Akio ;
Tamai, Yoshitaka ;
Hayakawa, Yoshihiro .
CANCER SCIENCE, 2009, 100 (08) :1544-1549
[9]  
Jin GY, 2011, EUROPEAN J RADIOLOGY
[10]  
Johnston SM, 2010, P SOC PHOTOOPTICAL I, V7622