Modules in which the annihilator of a fully invariant submodule is pure

被引:0
|
作者
Amirzadeh Dana, P. [1 ]
Moussavi, A. [1 ]
机构
[1] Tarbiat Modares Univ, Dept Pure Math, Fac Math Sci, POB 14115-134, Tehran, Iran
关键词
Endo-AIP module; endo-APP module; left AIP ring; left APP-ring; pure ideal; Rickart and p; q-Baer modules; s-unital ideal; the endomorphism ring; DIRECT SUMS; BAER; RINGS;
D O I
10.1080/00927872.2020.1773840
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A ring R is called left AIP if R modulo the left annihilator of any ideal is flat. In this paper, we characterize a module M-R for which the endomorphism ring End(R) (M) is left AIP. We say a module MR is endo-AIP (resp. endo-APP) if M has the property that "the left annihilator in End(R) (M) of every fully invariant submodule of M (resp. End(R)(M)m, for every m is an element of M) is pure as a left ideal in End(R)(M)". The notion of endo-AIP (resp. endo-APP) modules generalizes the notion of Rickart and p.q.-Baer modules to a much larger class of modules. It is shown that every direct summand of an endo-AIP (resp.endo-APP) module inherits the property and that every projective module over a left AIP (resp. APP)-ring is an endo-AIP (resp. endoAPP) module.
引用
收藏
页码:4875 / 4888
页数:14
相关论文
共 50 条
  • [31] THE LATTICE OF FULLY INVARIANT SUBGROUPS OF A COTORSION HULL
    Kemoklidze, Tariel
    GEORGIAN MATHEMATICAL JOURNAL, 2009, 16 (01) : 89 - 104
  • [32] Projection Invariant t-Baer and Related Modules
    Kara, Yeliz
    UKRAINIAN MATHEMATICAL JOURNAL, 2024, 75 (10) : 1533 - 1548
  • [33] Automorphism-invariant semi-Artinian modules
    Tuganbaev, A. A.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (02)
  • [34] Automorphism-invariant modules satisfy the exchange property
    Guil Asensio, Pedro A.
    Srivastava, Ashish K.
    JOURNAL OF ALGEBRA, 2013, 388 : 101 - 106
  • [35] On M-coidempotent elements and fully coidempotent modules
    Ceken Gezen, Secil
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (11) : 4638 - 4646
  • [36] On (weakly) co-Hopfian automorphism-invariant modules
    Quynh, Truong Cong
    Abyzov, Adel
    Kosan, M. Tamer
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (07) : 2894 - 2904
  • [37] Modules which are coinvariant under automorphisms of their projective covers
    Guil Asensio, Pedro A.
    Tutuncu, Derya Keskin
    Kalebogaz, Berke
    Srivastava, Ashish K.
    JOURNAL OF ALGEBRA, 2016, 466 : 147 - 152
  • [38] Fully invariant-extending modular lattices, and applications (I)
    Albu, Toma
    Kara, Yeliz
    Tercan, Adnan
    JOURNAL OF ALGEBRA, 2019, 517 : 207 - 222
  • [39] Pure projective torsion free modules over Bass domains
    Prihoda, Pavel
    Puninski, Gena
    Toffalori, Carlo
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (04) : 757 - 762
  • [40] On minimal absolutely pure domain of RD-fllat modules
    Alagoz, Yusuf
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (06) : 2292 - 2303