共 50 条
Modules in which the annihilator of a fully invariant submodule is pure
被引:0
|作者:
Amirzadeh Dana, P.
[1
]
Moussavi, A.
[1
]
机构:
[1] Tarbiat Modares Univ, Dept Pure Math, Fac Math Sci, POB 14115-134, Tehran, Iran
关键词:
Endo-AIP module;
endo-APP module;
left AIP ring;
left APP-ring;
pure ideal;
Rickart and p;
q-Baer modules;
s-unital ideal;
the endomorphism ring;
DIRECT SUMS;
BAER;
RINGS;
D O I:
10.1080/00927872.2020.1773840
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
A ring R is called left AIP if R modulo the left annihilator of any ideal is flat. In this paper, we characterize a module M-R for which the endomorphism ring End(R) (M) is left AIP. We say a module MR is endo-AIP (resp. endo-APP) if M has the property that "the left annihilator in End(R) (M) of every fully invariant submodule of M (resp. End(R)(M)m, for every m is an element of M) is pure as a left ideal in End(R)(M)". The notion of endo-AIP (resp. endo-APP) modules generalizes the notion of Rickart and p.q.-Baer modules to a much larger class of modules. It is shown that every direct summand of an endo-AIP (resp.endo-APP) module inherits the property and that every projective module over a left AIP (resp. APP)-ring is an endo-AIP (resp. endoAPP) module.
引用
收藏
页码:4875 / 4888
页数:14
相关论文