Modules in which the annihilator of a fully invariant submodule is pure

被引:0
|
作者
Amirzadeh Dana, P. [1 ]
Moussavi, A. [1 ]
机构
[1] Tarbiat Modares Univ, Dept Pure Math, Fac Math Sci, POB 14115-134, Tehran, Iran
关键词
Endo-AIP module; endo-APP module; left AIP ring; left APP-ring; pure ideal; Rickart and p; q-Baer modules; s-unital ideal; the endomorphism ring; DIRECT SUMS; BAER; RINGS;
D O I
10.1080/00927872.2020.1773840
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A ring R is called left AIP if R modulo the left annihilator of any ideal is flat. In this paper, we characterize a module M-R for which the endomorphism ring End(R) (M) is left AIP. We say a module MR is endo-AIP (resp. endo-APP) if M has the property that "the left annihilator in End(R) (M) of every fully invariant submodule of M (resp. End(R)(M)m, for every m is an element of M) is pure as a left ideal in End(R)(M)". The notion of endo-AIP (resp. endo-APP) modules generalizes the notion of Rickart and p.q.-Baer modules to a much larger class of modules. It is shown that every direct summand of an endo-AIP (resp.endo-APP) module inherits the property and that every projective module over a left AIP (resp. APP)-ring is an endo-AIP (resp. endoAPP) module.
引用
收藏
页码:4875 / 4888
页数:14
相关论文
共 50 条
  • [1] Rings in Which the Annihilator of an Ideal Is Pure
    Majidinya, A.
    Moussavi, A.
    Paykan, K.
    ALGEBRA COLLOQUIUM, 2015, 22 : 947 - 968
  • [2] On modules in which every finitely generated submodule is a kernel of an endomorphism
    Neishabouri, Pegah
    Tolooei, Yaser
    Bagheri, Saeid
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (02) : 841 - 858
  • [3] MODULES WHICH ARE INVARIANT UNDER IDEMPOTENTS OF THEIR ENVELOPES
    Le Van Thuyet
    Phan Dan
    Truong Cong Quynh
    COLLOQUIUM MATHEMATICUM, 2016, 143 (02) : 237 - 250
  • [4] Modules which are invariant under nilpotents of their envelopes and covers
    Truong Cong Quynh
    Abyzov, Adel
    Dinh Duc Tai
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (12)
  • [5] MODULES WHICH ARE INVARIANT UNDER AUTOMORPHISMS OF THEIR INJECTIVE HULLS
    Lee, Tsiu-Kwen
    Zhou, Yiqiang
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (02)
  • [6] Modules which are invariant under t-automorphisms of their injective hulls
    Atani, Shahabaddin Ebrahimi
    Hesari, Saboura Dolati Pish
    Khoramdel, Mehdi
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (01) : 119 - 128
  • [7] T-idempotent invariant modules
    Atani, Shahabaddin Ebrahimi
    Khoramdel, Mehdi
    Hesari, Saboura Dolati Pish
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (06)
  • [8] ON FULLY IDEMPOTENT MODULES
    Tutuncu, Derya Keskin
    Ertas, Nil Orhan
    Tribak, Rachid
    Smith, Patrick F.
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (08) : 2707 - 2722
  • [9] ABSOLUTELY E-PURE MODULES AND E-PURE SPLIT MODULES
    Yan Hangyu
    ACTA MATHEMATICA SCIENTIA, 2011, 31 (01) : 207 - 220
  • [10] Rickart modules relative to singular submodule and dual Goldie torsion theory
    Ungor, Burcu
    Halicioglu, Sait
    Harmanci, Abdullah
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (08)