Asymptotic analysis of periodically-perforated nonlinear media

被引:31
作者
Ansini, N [1 ]
Braides, A [1 ]
机构
[1] SISSA, I-34014 Trieste, Italy
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2002年 / 81卷 / 05期
关键词
perforated domains; relaxed Dirichlet problems; Nonlinear capacity; Gamma-limits;
D O I
10.1016/S0021-7824(01)01226-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a direct proof of the nonlinear vector-valued variational version of the Cioranescu Murat result on the asymptotic behaviour of Dirichlet problems in perforated domains giving rise to extra terms. Our method is based on a lemma which allows to modify sequences of functions in the vicinity of the perforation, in the spirit of a method proposed by De Giorgi to match boundary conditions. We describe the extra term by a capacitary formula involving a quasiconvexification process. Nonexistence and nonpositive homogeneity phenomena are discussed. (C) 2002 Editions scientifiques et medicales Elsevier SAS. All rights reserved.
引用
收藏
页码:439 / 451
页数:13
相关论文
共 20 条
[1]   Separation of scales and almost-periodic effects in the asymptotic behaviour of perforated periodic media [J].
Ansini, N ;
Braides, A .
ACTA APPLICANDAE MATHEMATICAE, 2001, 65 (1-3) :59-81
[2]   VARIATIONAL-INEQUALITIES WITH VARYING OBSTACLES - THE GENERAL-FORM OF THE LIMIT PROBLEM [J].
ATTOUCH, H ;
PICARD, C .
JOURNAL OF FUNCTIONAL ANALYSIS, 1983, 50 (03) :329-386
[3]  
BALL JM, 1984, J FUNCT ANAL, V58, P225, DOI 10.1016/0022-1236(84)90041-7
[4]  
Braides A., 1996, ARCH RATION MECH AN, V135, P297
[5]  
BRAIDES A, GAMMA CONVERGENCE BE
[6]  
Buttazzo G., 1989, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations
[7]  
Cioranescu D., 1983, RES NOTES MATH 70, VIII, P154
[8]  
CIORANESCU D, 1982, NONLINEAR PARTIAL DI, V2, P98
[9]  
Dal Maso G., 1993, INTRO GAMMA CONVERGE
[10]   LIMITS OF NONLINEAR DIRICHLET PROBLEMS IN VARYING DOMAINS [J].
DALMASO, G ;
DEFRANCESCHI, A .
MANUSCRIPTA MATHEMATICA, 1988, 61 (03) :251-278