Lie symmetries, Kac-Moody-Virasoro algebras and integrability of certain (2+1)-dimensional nonlinear evolution equations

被引:36
作者
Velan, MS [1 ]
Lakshmanan, M [1 ]
机构
[1] Bharathidasan Univ, Ctr Nonlinear Dynam, Dept Phys, Tiruchirappalli 620024, Tamil Nadu, India
关键词
D O I
10.2991/jnmp.1998.5.2.10
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study Lie symmetries, Kac-Moody-Virasoro algebras, similarity reductions and particular solutions of two different recently introduced (2+1)-dimensional nonlinear evolution equations, namely (i) (2+1)-dimensional breaking soliton equation and (ii) (2+1)-dimensional nonlinear Schrodinger type equation introduced by Zakharov and studied later by Strachan. Interestingly our studies show that not all integrable higher dimensional systems admit Kac-Moody-Virasoro type sub-algebras. Particularly the two integrable systems mentioned above do not admit Virasoro type subalgebras, eventhough the other integrable higher dimensional systems do admit such algebras which ave have also reviewed in the Appendix. Further, we bring out physically interesting solutions for special choices of the symmetry parameters in both the systems.
引用
收藏
页码:190 / 211
页数:22
相关论文
共 34 条
[1]  
Ablowitz M J., 1990, Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform
[2]  
AMES WF, 1992, NUMER METH PART D E, pCH2
[3]  
Bluman G. W., 1989, Symmetries and Differential Equations
[4]   BREAKING SOLITONS IN 2 + 1-DIMENSIONAL INTEGRABLE EQUATIONS [J].
BOGOYAVLENSKII, OI .
RUSSIAN MATHEMATICAL SURVEYS, 1990, 45 (04) :1-86
[5]   ON THE SPECTRAL TRANSFORM OF A KORTEWEG-DEVRIES EQUATION IN 2 SPATIAL DIMENSIONS [J].
BOITI, M ;
LEON, JJP ;
MANNA, M ;
PEMPINELLI, F .
INVERSE PROBLEMS, 1986, 2 (03) :271-279
[6]   SPECTRAL TRANSFORM FOR A 2-SPATIAL DIMENSION EXTENSION OF THE DISPERSIVE LONG-WAVE EQUATION [J].
BOITI, M ;
LEON, JJP ;
PEMPINELLI, F .
INVERSE PROBLEMS, 1987, 3 (03) :371-387
[7]   SOME REDUCTIONS OF THE SELF-DUAL YANG-MILLS EQUATIONS TO INTEGRABLE SYSTEMS IN 2+1-DIMENSIONS [J].
CHAKRAVARTY, S ;
KENT, SL ;
NEWMAN, ET .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (02) :763-772
[8]   ON THE INFINITE-DIMENSIONAL SYMMETRY GROUP OF THE DAVEY-STEWARTSON EQUATIONS [J].
CHAMPAGNE, B ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (01) :1-8
[9]   Nonclassical symmetry reductions of the Boussinesq equation [J].
Clarkson, PA .
CHAOS SOLITONS & FRACTALS, 1995, 5 (12) :2261-2301
[10]   SYMMETRY REDUCTION FOR THE KADOMTSEV-PETVIASHVILI EQUATION USING A LOOP ALGEBRA [J].
DAVID, D ;
KAMRAN, N ;
LEVI, D ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (05) :1225-1237