Pollen analysis using multispectral imaging flow cytometry and deep learning

被引:55
|
作者
Dunker, Susanne [1 ,2 ]
Motivans, Elena [2 ,3 ,4 ]
Rakosy, Demetra [1 ,2 ]
Boho, David [5 ]
Maeder, Patrick [5 ]
Hornick, Thomas [1 ,2 ]
Knight, Tiffany M. [2 ,3 ,4 ]
机构
[1] UFZ Helmholtz Ctr Environm Res, Permoserstr 15, D-04318 Leipzig, Germany
[2] German Ctr Integrat Biodivers Res iDiv, Deutsch Pl 5a, D-04103 Leipzig, Germany
[3] UFZ Helmholtz Ctr Environm Res, Kirchtor 1, D-06120 Halle, Saale, Germany
[4] Martin Luther Univ Halle Wittenberg, Kirchtor 1, D-06108 Halle, Saale, Germany
[5] Tech Univ Ilmenau, Software Engn Safety Crit Syst Grp, D-98693 Ilmenau, Germany
关键词
convolutional neural networks; deep learning; multispectral imaging flow cytometry; pollen; pollinator; species identification; COLLECTED POLLEN; LIGHT-MICROSCOPY; SIZE; FLUORESCENCE; LOADS; AUTOFLUORESCENCE; IDENTIFICATION; ANGIOSPERMS; PALYNOLOGY; MORPHOLOGY;
D O I
10.1111/nph.16882
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Pollen identification and quantification are crucial but challenging tasks in addressing a variety of evolutionary and ecological questions (pollination, paleobotany), but also for other fields of research (e.g. allergology, honey analysis or forensics). Researchers are exploring alternative methods to automate these tasks but, for several reasons, manual microscopy is still the gold standard. In this study, we present a new method for pollen analysis using multispectral imaging flow cytometry in combination with deep learning. We demonstrate that our method allows fast measurement while delivering high accuracy pollen identification. A dataset of 426 876 images depicting pollen from 35 plant species was used to train a convolutional neural network classifier. We found the best-performing classifier to yield a species-averaged accuracy of 96%. Even species that are difficult to differentiate using microscopy could be clearly separated. Our approach also allows a detailed determination of morphological pollen traits, such as size, symmetry or structure. Our phylogenetic analyses suggest phylogenetic conservatism in some of these traits. Given a comprehensive pollen reference database, we provide a powerful tool to be used in any pollen study with a need for rapid and accurate species identification, pollen grain quantification and trait extraction of recent pollen.
引用
收藏
页码:593 / 606
页数:14
相关论文
共 50 条
  • [1] Multispectral imaging flow cytometry
    Basiji, David
    2007 4TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING : MACRO TO NANO, VOLS 1-3, 2007, : 1100 - 1103
  • [2] The in vitro micronucleus assay using imaging flow cytometry and deep learning
    Matthew A. Rodrigues
    Christine E. Probst
    Artiom Zayats
    Bryan Davidson
    Michael Riedel
    Yang Li
    Vidya Venkatachalam
    npj Systems Biology and Applications, 7
  • [3] The in vitro micronucleus assay using imaging flow cytometry and deep learning
    Rodrigues, Matthew A.
    Probst, Christine E.
    Zayats, Artiom
    Davidson, Bryan
    Riedel, Michael
    Li, Yang
    Venkatachalam, Vidya
    NPJ SYSTEMS BIOLOGY AND APPLICATIONS, 2021, 7 (01)
  • [4] Fluorescent in situ hybridization in suspension analysis using ImageStream™ multispectral imaging flow cytometry
    Brawley, J
    George, TC
    Hall, BE
    Frost, K
    Zimmerman, CA
    Seo, M
    Basiji, D
    Ortyn, WE
    Morrissey, P
    CYTOMETRY PART A, 2004, 59A (01): : 130 - 130
  • [5] Deductive automated pollen classification in environmental samples via exploratory deep learning and imaging flow cytometry
    Barnes, Claire M.
    Power, Ann L.
    Barber, Daniel G.
    Tennant, Richard K.
    Jones, Richard T.
    Lee, G. Rob
    Hatton, Jackie
    Elliott, Angela
    Zaragoza-Castells, Joana
    Haley, Stephen M.
    Summers, Huw D.
    Doan, Minh
    Carpenter, Anne E.
    Rees, Paul
    Love, John
    NEW PHYTOLOGIST, 2023, 240 (03) : 1305 - 1326
  • [6] Phenotypic Analysis of Microalgae Populations Using Label-Free Imaging Flow Cytometry and Deep Learning
    Isil, Cagatay
    de Haan, Kevin
    Gorocs, Zoltan
    Koydemir, Hatice Ceylan
    Peterman, Spencer
    Baum, David
    Song, Fang
    Skandakumar, Thamira
    Gumustekin, Esin
    Ozcan, Aydogan
    ACS PHOTONICS, 2021, 8 (04) : 1232 - 1242
  • [7] Clinical Applications of Multispectral Imaging Flow Cytometry
    Minderman, H.
    George, T. C.
    OLoughlin, K. L.
    Wallace, P. K.
    26TH SOUTHERN BIOMEDICAL ENGINEERING CONFERENCE: SBEC 2010, 2010, 32 : 560 - +
  • [8] Deep imaging flow cytometry
    Huang, Kangrui
    Matsumura, Hiroki
    Zhao, Yaqi
    Herbig, Maik
    Yuan, Dan
    Mineharu, Yohei
    Harmon, Jeffrey
    Findinier, Justin
    Yamagishi, Mai
    Ohnuki, Shinsuke
    Nitta, Nao
    Grossman, Arthur R.
    Ohya, Yoshikazu
    Mikami, Hideharu
    Isozaki, Akihiro
    Goda, Keisuke
    LAB ON A CHIP, 2022, 22 (05) : 876 - 889
  • [9] The potential of multispectral imaging flow cytometry for environmental monitoring
    Dunker, Susanne
    Boyd, Matthew
    Durka, Walter
    Erler, Silvio
    Harpole, W. Stanley
    Henning, Silvia
    Herzschuh, Ulrike
    Hornick, Thomas
    Knight, Tiffany
    Lips, Stefan
    Maeder, Patrick
    Svara, Elena Motivans
    Mozarowski, Steven
    Rakosy, Demetra
    Roemermann, Christine
    Schmitt-Jansen, Mechthild
    Stoof-Leichsenring, Kathleen
    Stratmann, Frank
    Treudler, Regina
    Virtanen, Risto
    Wendt-Potthoff, Katrin
    Wilhelm, Christian
    CYTOMETRY PART A, 2022, 101 (09) : 782 - 799
  • [10] Characteristics and applications of ImageStream™ multispectral imaging flow cytometry
    Basiji, D
    Ortyn, WE
    George, TC
    Brawley, J
    Hall, BE
    Morrissey, P
    CYTOMETRY PART A, 2004, 59A (01): : 87 - 87