Wavelet Based Edge Feature Enhancement for Convolutional Neural Networks

被引:7
|
作者
De Silva, D. D. N. [1 ]
Fernando, S. [1 ]
Piyatilake, I. T. S. [1 ]
Karunarathne, A. V. S. [1 ]
机构
[1] Univ Moratuwa, Moratuwa, Sri Lanka
来源
ELEVENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2018) | 2019年 / 11041卷
关键词
Wavelet transform; Convolutional neural networks; Edge feature enhancement;
D O I
10.1117/12.2522849
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional neural networks are able to perform a hierarchical learning process starting with local features. However, a limited attention is paid to enhancing such elementary level features like edges. We propose and evaluate two wavelet-based edge-feature enhancement methods to preprocess the input images to convolutional neural networks. The first method develops representations by decomposing the input images using wavelet transform and limited reconstructing subsequently. The second method develops such feature-enhanced inputs to the network using local modulus maxima of wavelet coefficients. For each method, we have developed a new preprocessing layer by implementing each proposed method and have appended to the network architecture. Our empirical evaluations demonstrate that the proposed methods are outperforming the baselines and previously published work.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Research on adaptive local feature enhancement in convolutional neural networks
    Sun, Tongfeng
    Shao, Changlong
    Liao, Hongmei
    Ding, Shifei
    Xu, Xinzheng
    IET IMAGE PROCESSING, 2020, 14 (16) : 4306 - 4315
  • [2] Short-Term Wind Power Prediction Based on Wavelet Feature Arrangement and Convolutional Neural Networks Deep Learning
    Peng, Xiaosheng
    Li, Yinhuan
    Dong, Lie
    Cheng, Kai
    Wang, Hongyu
    Xu, QiyouXU
    Wang, Bo
    Liu, Chun
    Che, Jianfeng
    Yang, Fan
    Li, Wenze
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2021, 57 (06) : 6375 - 6384
  • [3] Goat Face Recognition Model Based on Wavelet Transform and Convolutional Neural Networks
    Huang L.
    Qian B.
    Guan F.
    Hou Z.
    Zhang Q.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2023, 54 (05): : 278 - 287
  • [4] Wavelet Convolutional Neural Networks for Handwritten Digits Recognition
    Ben Chaabane, Chiraz
    Mellouli, Dorra
    Hamdani, Tarek M.
    Alimi, Adel M.
    Abraham, Ajith
    HYBRID INTELLIGENT SYSTEMS, HIS 2017, 2018, 734 : 305 - 310
  • [5] Wavelet Transform for the Analysis of Convolutional Neural Networks in Texture Recognition
    Florindo, Joao Batista
    PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 4, 2022, : 502 - 509
  • [6] Robust contrast enhancement forensics based on convolutional neural networks
    Shan, Wuyang
    Yi, Yaohua
    Huang, Ronggang
    Xie, Yong
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2019, 71 : 138 - 146
  • [7] A novel contrast enhancement forensics based on convolutional neural networks
    Sun, Jee-Young
    Kim, Seung-Wook
    Lee, Sang-Won
    Ko, Sung-Jea
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2018, 63 : 149 - 160
  • [8] Measuring Feature Importance of Convolutional Neural Networks
    Zhang, Xiaohang
    Gao, Jiuyi
    IEEE ACCESS, 2020, 8 : 196062 - 196074
  • [9] Convolutional Neural Network Feature Reduction using Wavelet Transform
    Levinskis, A.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2013, 19 (03) : 61 - 64
  • [10] Enhanced wavelet convolutional neural networks for visual tracking
    Guo, Qiang
    Cao, Xuefei
    Zou, Qinglong
    JOURNAL OF ELECTRONIC IMAGING, 2018, 27 (05)