A Darboux theorem for Hamiltonian operators in the formal calculus of variations

被引:67
作者
Getzler, E [1 ]
机构
[1] Kyoto Univ, Math Sci Res Inst, Kyoto 6068502, Japan
[2] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
关键词
D O I
10.1215/S0012-7094-02-11136-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a formal Darboux-type theorem for Hamiltonian operators of hydrodynamic type, which arise as dispersionless limits of the Hamiltonian operators in the KdV and similar hierarchies. We prove that the Schouten Lie algebra is a formal differential graded Lie algebra, which allows us to obtain an analogue of the Darboux normal form in this context. We include an exposition of the formal deformation theory of differential graded Lie algebras g concentrated in degrees [-1, infinity); the formal deformations of g are parametrized by a 2-groupoid that we call the Deligne 2-groupoid of g, and quasi-isomorphic differential graded Lie algebras have equivalent Deligne 2-groupoids.
引用
收藏
页码:535 / 560
页数:26
相关论文
共 10 条
[1]  
[Anonymous], USPEKHI MAT NAUK
[2]  
Dickey L. A., 1996, CONT MATH, V227, P67
[3]  
GELFAND IM, 1980, FUNKT ANAL PRIL, V14, P71
[4]  
GOLDMAN W. M., 1988, PUBL MATH-PARIS, V67, P43, DOI 10.1007/BF02699127
[5]  
KONTSEVICH M, ARXIVQALG9709040
[6]   KORTEWEG-DEVRIES EQUATION AND GENERALIZATIONS .5. UNIQUENESS AND NONEXISTENCE OF POLYNOMIAL CONSERVATION LAWS [J].
KRUSKAL, MD ;
MIURA, RM ;
GARDNER, CS ;
ZABUSKY, NJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1970, 11 (03) :952-&
[7]   ALGEBRAIC CLASSIFICATION OF EQUIVARIANT HOMOTOPY 2-TYPES .1. [J].
MOERDIJK, I ;
SVENSSON, JA .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1993, 89 (1-2) :187-216
[8]   COHOMOLOGY + DEFORMATIONS OF ALGEBRAIC STRUCTURES [J].
NIJENHUIS, A ;
RICHARDSON, RW .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1964, 70 (03) :406-&
[9]  
Olver P.J., 1984, CONT MATH, V28, P231, DOI [DOI 10.1090/CONM/028/751987, DOI 10.1090/C0NM/028/751987)]
[10]   BOUNDARY-VALUES AS HAMILTONIAN VARIABLES .1. NEW POISSON BRACKETS [J].
SOLOVIEV, VO .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (12) :5747-5769