Estimating the spatiotemporal variation of NO2 concentration using an adaptive neuro-fuzzy inference system

被引:40
|
作者
Yeganeh, Bijan [1 ,2 ]
Hewson, Michael G. [3 ]
Clifford, Samuel [2 ,4 ]
Tavassoli, Ahmad [5 ]
Knibbs, Luke D. [6 ]
Morawska, Lidia [1 ]
机构
[1] Queensland Univ Technol, Int Lab Air Qual & Hlth, Brisbane, Qld 4001, Australia
[2] Ctr Air Qual & Hlth Res & Evaluat, Glebe, NSW 2037, Australia
[3] Cent Queensland Univ, Sch Educ & Arts, North Rockhampton, Qld 4702, Australia
[4] Queensland Univ Technol, ARC Ctr Excellence Math & Stat Frontiers, Brisbane, Qld 4001, Australia
[5] Univ Queensland, Sch Civil Engn, St Lucia, Qld 4072, Australia
[6] Univ Queensland, Sch Publ Hlth, Herston, Qld 4006, Australia
基金
英国医学研究理事会;
关键词
NO2; Satellite data; ANFIS; Spatiotemporal; Transport model; Australia; LAND-USE REGRESSION; FINE PARTICULATE MATTER; AIR-POLLUTION; EXPOSURE ASSESSMENT; NITROGEN-DIOXIDE; URBAN AIR; SATELLITE; MODELS; PREDICTION; PM2.5;
D O I
10.1016/j.envsoft.2017.11.031
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Statistical modelling has been successfully used to estimate the variations of NO2 concentration, but employing new modelling techniques can make these estimations far more accurate. To do so, for the first time in application to spatiotemporal air pollution modelling, we employed a soft computing algorithm called adaptive neuro-fuzzy inference system (ANFIS) to estimate the NO2 variations. Comprehensive data sets were investigated to determine the most effective predictors for the modelling process, including land use, meteorological, satellite, and traffic variables. We have demonstrated that using selected satellite, traffic, meteorological, and land use predictors in modelling increased the R-2 by 21%, and decreased the root mean square error (RMSE) by 47% compared with the model only trained by land use and meteorological predictors. The ANFIS model found to have better performance and higher accuracy than the multiple regression model. Our best model, captures 91% of the spatiotemporal variability of monthly mean NO2 concentrations at 1 km spatial resolution (RMSE 1.49 ppb) in a selected area of Australia. (c) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:222 / 235
页数:14
相关论文
共 50 条
  • [31] Objective evaluation of seam pucker using an adaptive neuro-fuzzy inference system
    Mak, K. L.
    Li, Wei
    VISAPP 2008: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 2, 2008, : 234 - 239
  • [32] Modeling physicochemical characteristics of Apple using adaptive neuro-fuzzy inference system
    Tahani, Behshad
    Beheshti, Babak
    Heidarisoltanabadi, Mohsen
    Hekmatian, Ehsan
    JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION, 2025, 19 (03) : 1777 - 1786
  • [33] Modeling of cotton yarn hairiness using adaptive neuro-fuzzy inference system
    Majumdar, Abhijit
    INDIAN JOURNAL OF FIBRE & TEXTILE RESEARCH, 2010, 35 (02) : 121 - 127
  • [34] Predicting groutability of granular soils using adaptive neuro-fuzzy inference system
    Tekin, Erhan
    Akbas, Sami Oguzhan
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (04): : 1091 - 1101
  • [35] A COVID-19 forecasting system using adaptive neuro-fuzzy inference
    Ly, Kim Tien
    FINANCE RESEARCH LETTERS, 2021, 41
  • [36] Automation of the Jib Crane Operations Using Adaptive Neuro-Fuzzy Inference System
    Meshchervakov, Vitalii
    Denisov, Igor
    2016 DYNAMICS OF SYSTEMS, MECHANISMS AND MACHINES (DYNAMICS), 2016,
  • [37] Adaptive Neuro-Fuzzy Inference System for antepartum antenatal care using phonocardiography
    Chourasia, Vijay S.
    Tiwari, Anil Kumar
    Gangopadhyay, Ranjan
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2012, 8 (04) : 357 - 374
  • [38] ROBOT MANIPULATOR INVERSE KINEMATICS USING ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM
    Hussein, Mustafa T.
    Gafer, Ali S.
    Fadhel, Essam Z.
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2020, 15 (03): : 1984 - 1998
  • [39] Adaptive Noise Suppression in Voice Communication Using a Neuro-Fuzzy Inference System
    Martinek, Radek
    Kelnar, Michal
    Vanus, Jan
    Koudelka, Petr
    Bilik, Petr
    Koziorek, Jiri
    Zidek, Jan
    2015 38TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2015, : 382 - 386
  • [40] An accurate optical gain model using adaptive neuro-fuzzy inference system
    Celebi, F. V.
    Altindag, T.
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2009, 3 (10): : 975 - 977