Estimating the spatiotemporal variation of NO2 concentration using an adaptive neuro-fuzzy inference system

被引:40
|
作者
Yeganeh, Bijan [1 ,2 ]
Hewson, Michael G. [3 ]
Clifford, Samuel [2 ,4 ]
Tavassoli, Ahmad [5 ]
Knibbs, Luke D. [6 ]
Morawska, Lidia [1 ]
机构
[1] Queensland Univ Technol, Int Lab Air Qual & Hlth, Brisbane, Qld 4001, Australia
[2] Ctr Air Qual & Hlth Res & Evaluat, Glebe, NSW 2037, Australia
[3] Cent Queensland Univ, Sch Educ & Arts, North Rockhampton, Qld 4702, Australia
[4] Queensland Univ Technol, ARC Ctr Excellence Math & Stat Frontiers, Brisbane, Qld 4001, Australia
[5] Univ Queensland, Sch Civil Engn, St Lucia, Qld 4072, Australia
[6] Univ Queensland, Sch Publ Hlth, Herston, Qld 4006, Australia
基金
英国医学研究理事会;
关键词
NO2; Satellite data; ANFIS; Spatiotemporal; Transport model; Australia; LAND-USE REGRESSION; FINE PARTICULATE MATTER; AIR-POLLUTION; EXPOSURE ASSESSMENT; NITROGEN-DIOXIDE; URBAN AIR; SATELLITE; MODELS; PREDICTION; PM2.5;
D O I
10.1016/j.envsoft.2017.11.031
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Statistical modelling has been successfully used to estimate the variations of NO2 concentration, but employing new modelling techniques can make these estimations far more accurate. To do so, for the first time in application to spatiotemporal air pollution modelling, we employed a soft computing algorithm called adaptive neuro-fuzzy inference system (ANFIS) to estimate the NO2 variations. Comprehensive data sets were investigated to determine the most effective predictors for the modelling process, including land use, meteorological, satellite, and traffic variables. We have demonstrated that using selected satellite, traffic, meteorological, and land use predictors in modelling increased the R-2 by 21%, and decreased the root mean square error (RMSE) by 47% compared with the model only trained by land use and meteorological predictors. The ANFIS model found to have better performance and higher accuracy than the multiple regression model. Our best model, captures 91% of the spatiotemporal variability of monthly mean NO2 concentrations at 1 km spatial resolution (RMSE 1.49 ppb) in a selected area of Australia. (c) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:222 / 235
页数:14
相关论文
共 50 条
  • [1] Bayesian inference using an adaptive neuro-fuzzy inference system
    Knaiber, Mohammed
    Alawieh, Leen
    FUZZY SETS AND SYSTEMS, 2023, 459 : 43 - 66
  • [2] Adaptive Neuro-Fuzzy Inference System for drought forecasting
    Bacanli, Ulker Guner
    Firat, Mahmut
    Dikbas, Fatih
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2009, 23 (08) : 1143 - 1154
  • [3] Estimating electromyography responses using an adaptive neuro-fuzzy inference system with subtractive clustering
    Cakit, Erman
    Karwowski, Waldemar
    HUMAN FACTORS AND ERGONOMICS IN MANUFACTURING & SERVICE INDUSTRIES, 2017, 27 (04) : 177 - 186
  • [4] Runoff estimation using modified adaptive neuro-fuzzy inference system
    Nath, Amitabha
    Mthethwa, Fisokuhle
    Saha, Goutam
    ENVIRONMENTAL ENGINEERING RESEARCH, 2020, 25 (04) : 545 - 553
  • [5] Performance analysis of vapor compression refrigeration system using an adaptive neuro-fuzzy inference system
    Gill, Jatinder
    Singh, Jagdev
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2017, 82 : 436 - 446
  • [6] LANDSLIDE SUSCEPTIBILITY MAPPING BY USING AN ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)
    Choi, J.
    Lee, Y. K.
    Lee, M. J.
    Kim, K.
    Park, Y.
    Kim, S.
    Goo, S.
    Cho, M.
    Sim, J.
    Won, J. S.
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 1989 - 1992
  • [7] Swelling Prediction in Compacted Soils Using Adaptive Neuro-Fuzzy Inference System
    Jokar, Mehdi Hashemi
    Mirassi, Sohrab
    Mahboubi, Meisam
    JORDAN JOURNAL OF CIVIL ENGINEERING, 2023, 17 (01) : 97 - 106
  • [8] Regional modeling of the ionosphere using adaptive neuro-fuzzy inference system in Iran
    Feizi, Rasoul
    Voosoghi, Behzad
    Razin, Mir Reza Ghaffari
    ADVANCES IN SPACE RESEARCH, 2020, 65 (11) : 2515 - 2528
  • [9] FORECASTING THE RAINFALL DATA BY ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM
    Yarar, Alpaslan
    Onucyildiz, Mustafa
    Sevimli, M. Faik
    SGEM 2009: 9TH INTERNATIONAL MULTIDISCIPLINARY SCIENTIFIC GEOCONFERENCE, VOL II, CONFERENCE PROCEEDING: MODERN MANAGEMENT OF MINE PRODUCING, GEOLOGY AND ENVIRONMENTAL PROTECTION, 2009, : 191 - +
  • [10] Tweet recommender model using adaptive neuro-fuzzy inference system
    Jain, Deepak Kumar
    Kumar, Akshi
    Sharma, Vibhuti
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 112 : 996 - 1009