Estimating the spatiotemporal variation of NO2 concentration using an adaptive neuro-fuzzy inference system

被引:40
作者
Yeganeh, Bijan [1 ,2 ]
Hewson, Michael G. [3 ]
Clifford, Samuel [2 ,4 ]
Tavassoli, Ahmad [5 ]
Knibbs, Luke D. [6 ]
Morawska, Lidia [1 ]
机构
[1] Queensland Univ Technol, Int Lab Air Qual & Hlth, Brisbane, Qld 4001, Australia
[2] Ctr Air Qual & Hlth Res & Evaluat, Glebe, NSW 2037, Australia
[3] Cent Queensland Univ, Sch Educ & Arts, North Rockhampton, Qld 4702, Australia
[4] Queensland Univ Technol, ARC Ctr Excellence Math & Stat Frontiers, Brisbane, Qld 4001, Australia
[5] Univ Queensland, Sch Civil Engn, St Lucia, Qld 4072, Australia
[6] Univ Queensland, Sch Publ Hlth, Herston, Qld 4006, Australia
基金
英国医学研究理事会;
关键词
NO2; Satellite data; ANFIS; Spatiotemporal; Transport model; Australia; LAND-USE REGRESSION; FINE PARTICULATE MATTER; AIR-POLLUTION; EXPOSURE ASSESSMENT; NITROGEN-DIOXIDE; URBAN AIR; SATELLITE; MODELS; PREDICTION; PM2.5;
D O I
10.1016/j.envsoft.2017.11.031
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Statistical modelling has been successfully used to estimate the variations of NO2 concentration, but employing new modelling techniques can make these estimations far more accurate. To do so, for the first time in application to spatiotemporal air pollution modelling, we employed a soft computing algorithm called adaptive neuro-fuzzy inference system (ANFIS) to estimate the NO2 variations. Comprehensive data sets were investigated to determine the most effective predictors for the modelling process, including land use, meteorological, satellite, and traffic variables. We have demonstrated that using selected satellite, traffic, meteorological, and land use predictors in modelling increased the R-2 by 21%, and decreased the root mean square error (RMSE) by 47% compared with the model only trained by land use and meteorological predictors. The ANFIS model found to have better performance and higher accuracy than the multiple regression model. Our best model, captures 91% of the spatiotemporal variability of monthly mean NO2 concentrations at 1 km spatial resolution (RMSE 1.49 ppb) in a selected area of Australia. (c) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:222 / 235
页数:14
相关论文
共 91 条
[1]   Regression and multilayer perceptron-based models to forecast hourly O3 and NO2 levels in the Bilbao area [J].
Agirre-Basurko, E ;
Ibarra-Berastegi, G ;
Madariaga, I .
ENVIRONMENTAL MODELLING & SOFTWARE, 2006, 21 (04) :430-446
[2]   Combining principal component regression and artificial neural networks for more accurate predictions of ground-level ozone [J].
Al-Alawi, Saleh M. ;
Abdul-Wahab, Sabah A. ;
Bakheit, Charles S. .
ENVIRONMENTAL MODELLING & SOFTWARE, 2008, 23 (04) :396-403
[3]   Statistical modeling of global geogenic arsenic contamination in groundwater [J].
Amini, Manouchehr ;
Abbaspour, Karim C. ;
Berg, Michael ;
Winkel, Lenny ;
Hug, Stephan J. ;
Hoehn, Eduard ;
Yang, Hong ;
Johnson, C. Annette .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (10) :3669-3675
[4]  
[Anonymous], 2009, ENCY DATABASE SYSTEM, DOI DOI 10.1007/978-0-387-39940-9_565
[5]  
Australian Bureau of Statistics, 2011, AUSTR POP GRID
[6]  
Australian Bureau of Statistics, 2012, POP CHANG S E QUEENS
[7]  
Australian Bureau of Statistics, 2011, MAIN STRUCT GREAT CA, V1, P15
[8]  
Australian Government, 2010, AIR QUAL FACT SHEET
[9]   Effect of the number of measurement sites on land use regression models in estimating local air pollution [J].
Basagana, Xavier ;
Rivera, Marcela ;
Aguilera, Inmaculada ;
Agis, David ;
Bouso, Laura ;
Elosua, Roberto ;
Foraster, Maria ;
de Nazelle, Audrey ;
Nieuwenhuijsen, Mark ;
Vila, Joan ;
Kuenzli, Nino .
ATMOSPHERIC ENVIRONMENT, 2012, 54 :634-642
[10]   National Spatiotemporal Exposure Surface for NO2: Monthly Scaling of a Satellite-Derived Land-Use Regression, 2000-2010 [J].
Bechle, Matthew J. ;
Millet, Dylan B. ;
Marshall, Julian D. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (20) :12297-12305