Conceptual design of ocean compressed air energy storage system

被引:0
|
作者
Lim, Saniel D. [1 ]
Mazzoleni, Andre P. [1 ]
Park, Joong-kyoo [1 ]
Ro, Paul I. [1 ]
Quinlan, Brendan [1 ]
机构
[1] N Carolina State Univ, Dept Mech & Aerosp Engn, Raleigh, NC 27695 USA
来源
2012 OCEANS | 2012年
关键词
Offshore; Ocean Compressed Air Energy; Energy Storage; Ocean Energy; CAES; OCAES; THERMODYNAMIC ANALYSIS; PERFORMANCE; PLANT;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, an ocean compressed air energy storage (OCAES) system is introduced as a utility scale energy storage option for electricity generated by wind, ocean currents, tides, and waves off the coast of North Carolina. Geographically, a location from 40km to 70km off the coast of Cape Hatteras is shown to be a good location for an OCAES system. Based on existing compressed air energy storage (CAES) system designs, a conceptual design of an OCAES system with thermal energy storage (TES) is presented. A simple thermodynamic analysis is presented for an adiabatic CAES system which shows that the overall efficiency is 65.9%. In addition, finite element simulations are presented which show the flow induced loads which will be experienced by OCAES air containers on the ocean floor. We discuss the fact that the combination of the buoyancy force and the flow induced lift forces (due to ocean currents) generates a periodic loading on the storage container and seabed, and how this presents engineering challenges related to the development of adequate anchoring systems. We also present a system, based on hydrolysis, which can be used for storing energy (in the form of oxygen and hydrogen gas) in containers on the ocean floor.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Conceptual Design of Ocean Compressed Air Energy Storage System
    Lim, Saniel D.
    Mazzoleni, Andre P.
    Park, Joong-kyoo
    Ro, Paul I.
    Quinlan, Brendan
    MARINE TECHNOLOGY SOCIETY JOURNAL, 2013, 47 (02) : 70 - 81
  • [2] Design of Ocean Compressed Air Energy Storage System
    Patil, Vikram C.
    Ro, Paul, I
    2019 IEEE UNDERWATER TECHNOLOGY (UT), 2019,
  • [3] Design of thermal energy storage unit for Compressed Air Energy Storage system
    Szybiak, Maciej
    Jaworski, Maciej
    17TH INTERNATIONAL CONFERENCE HEAT TRANSFER AND RENEWABLE SOURCES OF ENERGY (HTRSE-2018), 2018, 70
  • [4] Modeling of liquid-piston based design for isothermal ocean compressed air energy storage system
    Patil, Vikram C.
    Ro, Paul, I
    JOURNAL OF ENERGY STORAGE, 2020, 31
  • [5] Compressed air energy storage system
    Saruta, Hiroki
    Sato, Takashi
    Nakamichi, Ryo
    Toshima, Masatake
    Kubo, Yohei
    R and D: Research and Development Kobe Steel Engineering Reports, 2020, 70 (01): : 42 - 46
  • [6] CONCEPTUAL DESIGN OF COMPRESSED AIR ENERGY-STORAGE ELECTRIC-POWER SYSTEMS
    GIRAMONTI, AJ
    LESSARD, RD
    BLECHER, WA
    SMITH, EB
    APPLIED ENERGY, 1978, 4 (04) : 231 - 249
  • [7] Design Strategy of Diagonal Compressors in Compressed Air Energy Storage System
    Zhang, Yuxin
    Zuo, Zhitao
    Guo, Wenbin
    Liang, Qi
    Chen, Haisheng
    JOURNAL OF THERMAL SCIENCE, 2024, 33 (03) : 872 - 887
  • [8] Design of a compressed air energy storage system for hydrostatic wind turbines
    Ali, Ammar E.
    Libardi, Nicholas C.
    Anwar, Sohel
    Izadian, Afshin
    AIMS ENERGY, 2018, 6 (02) : 229 - 244
  • [9] Design and flow Simulation of compressed Air Energy Storage system in Aquifer
    Liu, Can
    3RD INTERNATIONAL CONFERENCE ON FLUID MECHANICS AND INDUSTRIAL APPLICATIONS, 2019, 1300
  • [10] Design Strategy of Diagonal Compressors in Compressed Air Energy Storage System
    ZHANG Yuxin
    ZUO Zhitao
    GUO Wenbin
    LIANG Qi
    CHEN Haisheng
    Journal of Thermal Science, 2024, 33 (03) : 872 - 887