Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide

被引:224
作者
Bao, Wei [1 ,2 ,3 ]
Borys, Nicholas J. [1 ,2 ]
Ko, Changhyun [3 ]
Suh, Joonki [3 ]
Fan, Wen [3 ]
Thron, Andrew [1 ,2 ]
Zhang, Yingjie [2 ,4 ]
Buyanin, Alexander [2 ,5 ]
Zhang, Jie [1 ]
Cabrini, Stefano [1 ,2 ]
Ashby, Paul D. [1 ,2 ]
Weber-Bargioni, Alexander [1 ,2 ]
Tongay, Sefaattin [3 ,6 ]
Aloni, Shaul [1 ,2 ]
Ogletree, D. Frank [1 ,2 ]
Wu, Junqiao [2 ,3 ]
Salmeron, Miquel B. [2 ,3 ]
Schuck, P. James [1 ,2 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Appl Sci & Technol Grad Program, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[6] Arizona State Univ, Dept Mat Sci & Engn, Tempe, AZ 85287 USA
来源
NATURE COMMUNICATIONS | 2015年 / 6卷
基金
美国国家科学基金会;
关键词
SINGLE-LAYER MOS2; ENERGY TRANSFER; GRAPHENE; HETEROGENEITY; ELECTRONICS; DIODES; STATES;
D O I
10.1038/ncomms8993
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Two-dimensional monolayer transition metal dichalcogenide semiconductors are ideal building blocks for atomically thin, flexible optoelectronic and catalytic devices. Although challenging for two-dimensional systems, sub-diffraction optical microscopy provides a nanoscale material understanding that is vital for optimizing their optoelectronic properties. Here we use the 'Campanile' nano-optical probe to spectroscopically image exciton recombination within monolayer MoS2 with sub-wavelength resolution (60 nm), at the length scale relevant to many critical optoelectronic processes. Synthetic monolayer MoS2 is found to be composed of two distinct optoelectronic regions: an interior, locally ordered but mesoscopically heterogeneous two-dimensional quantum well and an unexpected similar to 300-nm wide, energetically disordered edge region. Further, grain boundaries are imaged with sufficient resolution to quantify local exciton-quenching phenomena, and complimentary nano-Auger microscopy reveals that the optically defective grain boundary and edge regions are sulfur deficient. The nanoscale structure-property relationships established here are critical for the interpretation of edge-and boundary-related phenomena and the development of next-generation two-dimensional optoelectronic devices.
引用
收藏
页数:7
相关论文
共 34 条
[1]  
Bao W, 2012, SCIENCE, V338, P1317, DOI [10.1126/science.1227977, 10.1126/science.122797]
[2]  
Baugher BWH, 2014, NAT NANOTECHNOL, V9, P262, DOI [10.1038/NNANO.2014.25, 10.1038/nnano.2014.25]
[3]   Optical nano-imaging of gate-tunable graphene plasmons [J].
Chen, Jianing ;
Badioli, Michela ;
Alonso-Gonzalez, Pablo ;
Thongrattanasiri, Sukosin ;
Huth, Florian ;
Osmond, Johann ;
Spasenovic, Marko ;
Centeno, Alba ;
Pesquera, Amaia ;
Godignon, Philippe ;
Zurutuza Elorza, Amaia ;
Camara, Nicolas ;
Javier Garcia de Abajo, F. ;
Hillenbrand, Rainer ;
Koppens, Frank H. L. .
NATURE, 2012, 487 (7405) :77-81
[4]   Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS2 [J].
Chernikov, Alexey ;
Berkelbach, Timothy C. ;
Hill, Heather M. ;
Rigosi, Albert ;
Li, Yilei ;
Aslan, Ozgur Burak ;
Reichman, David R. ;
Hybertsen, Mark S. ;
Heinz, Tony F. .
PHYSICAL REVIEW LETTERS, 2014, 113 (07)
[5]  
Cui X, 2015, NAT NANOTECHNOL, V10, P534, DOI [10.1038/NNANO.2015.70, 10.1038/nnano.2015.70]
[6]  
De Angelis F, 2010, NAT NANOTECHNOL, V5, P67, DOI [10.1038/nnano.2009.348, 10.1038/NNANO.2009.348]
[7]  
Fei Z, 2013, NAT NANOTECHNOL, V8, P821, DOI [10.1038/nnano.2013.197, 10.1038/NNANO.2013.197]
[8]   Gate-tuning of graphene plasmons revealed by infrared nano-imaging [J].
Fei, Z. ;
Rodin, A. S. ;
Andreev, G. O. ;
Bao, W. ;
McLeod, A. S. ;
Wagner, M. ;
Zhang, L. M. ;
Zhao, Z. ;
Thiemens, M. ;
Dominguez, G. ;
Fogler, M. M. ;
Castro Neto, A. H. ;
Lau, C. N. ;
Keilmann, F. ;
Basov, D. N. .
NATURE, 2012, 487 (7405) :82-85
[9]  
Feng J, 2012, NAT PHOTONICS, V6, P865, DOI [10.1038/NPHOTON.2012.285, 10.1038/nphoton.2012.285]
[10]  
Fiori G, 2014, NAT NANOTECHNOL, V9, P768, DOI [10.1038/nnano.2014.207, 10.1038/NNANO.2014.207]