On stable compact minimal submanifolds of Riemannian product manifolds

被引:4
作者
Chen, Hang [1 ]
Wang, Xianfeng [2 ,3 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
关键词
Stability; Minimal submanifold; Riemannian product manifold; delta-pinched Riemannian manifold; LAGRANGIAN SUBMANIFOLDS; SURFACES; INDEX; CURRENTS;
D O I
10.1016/j.jmaa.2013.01.068
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove a classification theorem for stable compact minimal submanifolds of a Riemannian product of an m(1)-dimensional (m(1) >= 3) hypersurface M-1 in Euclidean space and any Riemannian manifold M-2, when the sectional curvature K-M1 of M-1 satisfies 1/root m(1)-1 <= K-M1 <= 1. In particular, when the ambient space is an m-dimensional (m >= 3) compact hypersurface M in Euclidean space, if the sectional curvature K-M of M satisfies 1/root m+1 <= K-M <= 1, then we conclude that there exist no stable compact minimal submanifolds in M. (c) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:693 / 701
页数:9
相关论文
共 14 条
[1]  
[Anonymous], INVENT MATH
[2]   THE STRUCTURE OF COMPLETE STABLE MINIMAL-SURFACES IN 3-MANIFOLDS OF NONNEGATIVE SCALAR CURVATURE [J].
FISCHERCOLBRIE, D ;
SCHOEN, R .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (02) :199-211
[3]  
Hu Z.-J., 2003, C MATH, P213
[4]   STABLE CURRENTS AND THEIR APPLICATION TO GLOBAL PROBLEMS IN REAL AND COMPLEX GEOMETRY [J].
LAWSON, HB ;
SIMONS, J .
ANNALS OF MATHEMATICS, 1973, 98 (03) :427-450
[5]  
Li H., 1997, COLLOQ MATH-WARSAW, V73, P1, DOI [10.4064/cm-73-1-1-13, DOI 10.4064/CM-73-1-1-13]
[6]   2ND VARIATION AND STABILITIES OF MINIMAL LAGRANGIAN SUBMANIFOLDS IN KAHLER-MANIFOLDS [J].
OH, YG .
INVENTIONES MATHEMATICAE, 1990, 101 (02) :501-519
[7]   STABLE MINIMAL SUBMANIFOLDS IN COMPACT RANK ONE SYMMETRICAL-SPACES [J].
OHNITA, Y .
TOHOKU MATHEMATICAL JOURNAL, 1986, 38 (02) :199-217
[8]  
Ros A, 2006, J DIFFER GEOM, V74, P69
[9]   On stable currents and positively curved hypersurfaces [J].
Shen, YB ;
He, Q .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (01) :237-246
[10]   MINIMAL VARIETIES IN RIEMANNIAN MANIFOLDS [J].
SIMONS, J .
ANNALS OF MATHEMATICS, 1968, 88 (01) :62-&