Optimal boundary control of nonlinear-viscous fluid flows

被引:26
作者
Baranovskii, E. S. [1 ]
机构
[1] Voronezh State Univ, Voronezh, Russia
基金
俄罗斯基础研究基金会;
关键词
flux; optimal control; boundary control; non-Newtonian fluids; nonlinear-viscous media;
D O I
10.1070/SM9246
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The optimal control problem for a stationary model of a nonlinear-viscous incompressible fluid flowing through a bounded domain is considered under the wall slip condition. As a control parameter, the dynamic pressure at the in-flow and out-flow parts of the boundary is used. Using methods of the theory of pseudomonotone mappings, the existence of a weak solution (a velocity-dynamic pressure pair) minimizing a given cost functional is proved. The behaviour of solutions and optimal values of the cost functional are studied when the set of admissible controls varies. In particular, it is shown that the marginal function of this control system is lower semicontinuous. Bibliography: 23 titles.
引用
收藏
页码:505 / 520
页数:16
相关论文
共 23 条
[1]  
Abergel F., 1990, Theor. Comput. Fluid Dyn., V1, P303, DOI DOI 10.1007/BF00271794
[2]  
[Anonymous], 1999, USP MAT NAUK, V54, P93, DOI DOI 10.4213/rm153
[3]  
Artemov MA, 2017, SIB ELECTRON MATH RE, V14, P1463, DOI 10.17377/semi.2017.14.126
[4]  
Baranovskii E. S., 2014, SIB ZH IND MATEMATIK, V17, P18, DOI [10.1134/S1990478914020033, DOI 10.1134/S1990478914020033]
[5]   Existence of Optimal Control for a Nonlinear-Viscous Fluid Model [J].
Baranovskii, Evgenii S. ;
Artemov, Andmikhail A. .
INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 2016
[6]   Existence and uniqueness of optimal control to the Navier-Stokes equations [J].
Bewley, T ;
Temam, R ;
Ziane, M .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (11) :1007-1011
[7]  
Conca C., 1994, Japan. J. Math. (N.S.), V20, P279, DOI DOI 10.4099/MATH1924.20.279
[8]  
Fursikov A. V., 1999, TRANSL MATH MONOGR, V187
[9]  
FURSIKOV AV, 1981, MAT SBORNIK, V115, P281
[10]  
Kazhikhov AV., 1983, J SOVIET MATH, V21, P700, DOI DOI 10.1007/BF01094432