Combination of multiple classifiers using local accuracy estimates

被引:676
|
作者
Woods, K [1 ]
Kegelmeyer, WP [1 ]
Bowyer, K [1 ]
机构
[1] SANDIA NATL LABS, CTR COMPUTAT ENGN, LIVERMORE, CA 94551 USA
关键词
combination of classifiers; dynamic classifier selection; local classifier accuracy; classifier fusion; ROC analysis;
D O I
10.1109/34.588027
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a method for combining classifiers that uses estimates of each individual classifier's local accuracy in small regions of feature space surrounding an unknown test sample. An empirical evaluation using five real data sets confirms the validity of our approach compared to some other Combination of Multiple Classifiers algorithms. We also suggest a methodology for determining the best mix of individual classifiers.
引用
收藏
页码:405 / 410
页数:6
相关论文
共 50 条
  • [31] Hyperspectral band selection based on the combination of multiple classifiers
    Li, Shijin
    Chang, Chun
    Yu, Yufeng
    Wang, Yaming
    2014 8TH IAPR WORKSHOP ON PATTERN RECOGNITION IN REMOTE SENSING (PRRS), 2014,
  • [32] THE COMBINATION OF MULTIPLE CLASSIFIERS BY A NEURAL-NETWORK APPROACH
    HUANG, YS
    LIU, K
    SUEN, CY
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 1995, 9 (03) : 579 - 597
  • [33] Combination of heterogeneous multiple classifiers based on evidence theory
    Han, De-Qiang
    Han, Chong-Zhao
    Yang, Yi
    2007 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, VOLS 1-4, PROCEEDINGS, 2007, : 573 - 578
  • [34] Steganalysis of AMR Speech Based on Multiple Classifiers Combination
    Tian, Hui
    Liu, Jie
    Chang, Chin-Chen
    Chen, Chih-Cheng
    Huang, Yongfeng
    IEEE ACCESS, 2019, 7 : 140957 - 140968
  • [35] A framework for probabilistic combination of multiple classifiers at an abstract level
    Kang, HJ
    Kim, KW
    Kim, JH
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 1997, 10 (04) : 379 - 385
  • [36] Analyses about the recognition rate of combination of multiple classifiers
    Tang, GH
    Dai, Y
    Liu, GS
    ISTM/2003: 5TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-6, CONFERENCE PROCEEDINGS, 2003, : 4580 - 4584
  • [37] Effective Boosting of Naive Bayesian Classifiers by Local Accuracy Estimation
    Xie, Zhipeng
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2009, 5476 : 849 - 858
  • [38] Combining multiple statistical classifiers to improve the accuracy of task classification
    Wu, WL
    Lu, RZ
    Gao, F
    Yuan, Y
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, 2005, 3406 : 452 - 462
  • [39] CCHR: Combination of Classifiers using Heuristic Retraining
    Parvin, Hamid
    Alizadeh, Hosein
    Minaei-Bidgoli, Behrouz
    Analoui, Morteza
    NCM 2008: 4TH INTERNATIONAL CONFERENCE ON NETWORKED COMPUTING AND ADVANCED INFORMATION MANAGEMENT, VOL 2, PROCEEDINGS, 2008, : 302 - 305
  • [40] Combination of boosted classifiers using bounded weights
    Altinçay, H
    Tüzel, A
    PATTERN RECOGNITION AND DATA MINING, PT 1, PROCEEDINGS, 2005, 3686 : 146 - 153