Freestanding Three-Dimensional Graphene Macroporous Supercapacitor

被引:33
作者
Down, Michael P. [1 ]
Banks, Craig E. [1 ]
机构
[1] Manchester Metropolitan Univ, Fac Sci & Engn, Manchester Fuel Cell Innovat Ctr, Chester St, Manchester M1 5GD, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
2D-nanomaterial; supercapacitors; EDLC; chemical vapor deposition; graphene; energy; IONIC LIQUIDS; HIGH-ENERGY; DESIGN; NANOMATERIALS; ELECTROLYTE; FILM;
D O I
10.1021/acsaem.7b00338
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The capacitive performance of three-dimensional (3D) freestanding graphene macroporous material (3D-G) fabricated via a chemical vapor deposition (CVD) methodology is comprehensively investigated for application as a potential supercapacitor material, without any mechanical support, for the first time. The 3D-G exhibits a capacitance of 266 mu F when charged at 16.6 mu A g(-1) in an aqueous electrolyte, a significant improvement over a freestanding 3D reticulated vitreous carbon (3D-RVC) macroporous alternative in the same electrolyte and conditions which exhibits a value of only 20 mu F. Further improvements in energy storage are demonstrated by utilizing ionic liquids as the electrolytic component. [C4MIM][BF4] facilitates capacitative values from 287 up to 636 mu F for the current range 6.66 mA g(-1) down to 16.6 mu A g(-1). The 3D graphene supercapacitors also display a specific energy density of 40.94 W h kg(-1) and a power density of 29.33 kW kg(-1). Utilizing the ionic liquids [C4MIM][NTf2], [C4MIM][PF6], and [C4MIM][BF4], we demonstrate that the capacitance of the 3D-G is influenced by ion mobility and the molecular mass of the electrolyte which has a profound effect upon the formation of the EDLC upon the graphene's electrode surface; higher molecular weights develop the charge double layer more slowly, resulting in a slightly poorer capacitive performance.
引用
收藏
页码:891 / 899
页数:17
相关论文
共 36 条
[1]  
Bonini M, 2013, RSC NANOSCI NANOTECH, P315, DOI 10.1039/9781849737630-00315
[2]  
Brownson D.A. C., 2014, HDB GRAPHENE ELECTRO
[3]   In situ electrochemical characterisation of graphene and various carbon-based electrode materials: an internal standard approach [J].
Brownson, Dale A. C. ;
Kelly, Peter J. ;
Banks, Craig E. .
RSC ADVANCES, 2015, 5 (47) :37281-37286
[4]   Freestanding three-dimensional graphene foam gives rise to beneficial electrochemical signatures within non-aqueous media [J].
Brownson, Dale A. C. ;
Figueiredo-Filho, Luiz C. S. ;
Ji, Xiaobo ;
Gomez-Mingot, Maria ;
Iniesta, Jesus ;
Fatibello-Filho, Orlando ;
Kampouris, Dimitrious K. ;
Banks, Craig E. .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (19) :5962-5972
[5]   Non-haloaluminate room-temperature ionic liquids in electrochemistry - A review [J].
Buzzeo, MC ;
Evans, RG ;
Compton, RG .
CHEMPHYSCHEM, 2004, 5 (08) :1106-1120
[6]   Macroporous 'bubble' graphene film via template-directed ordered-assembly for high rate supercapacitors [J].
Chen, Cheng-Meng ;
Zhang, Qiang ;
Huang, Chun-Hsien ;
Zhao, Xiao-Chen ;
Zhang, Bing-Sen ;
Kong, Qing-Qiang ;
Wang, Mao-Zhang ;
Yang, Yong-Gang ;
Cai, Rong ;
Su, Dang Sheng .
CHEMICAL COMMUNICATIONS, 2012, 48 (57) :7149-7151
[7]   Polymer nanocomposite foams [J].
Chen, Limeng ;
Rende, Deniz ;
Schadler, Linda S. ;
Ozisik, Rahmi .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (12) :3837-3850
[8]   Preparation and Characterization of Flexible Asymmetric Supercapacitors Based on Transition-Metal-Oxide Nanowire/Single-Walled Carbon Nanotube Hybrid Thin-Film Electrodes [J].
Chen, Po-Chiang ;
Shen, Guozhen ;
Shi, Yi ;
Chen, Haitian ;
Zhou, Chongwu .
ACS NANO, 2010, 4 (08) :4403-4411
[9]  
Chen ZP, 2011, NAT MATER, V10, P424, DOI [10.1038/nmat3001, 10.1038/NMAT3001]
[10]   3D Macroporous Graphene Frameworks for Supercapacitors with High Energy and Power Densities [J].
Choi, Bong Gill ;
Yang, MinHo ;
Hong, Won Hi ;
Choi, Jang Wook ;
Huh, Yun Suk .
ACS NANO, 2012, 6 (05) :4020-4028