Tools and Recommendations for Reproducible Teaching

被引:4
作者
Dogucu, Mine [1 ,2 ]
Cetinkaya-Rundel, Mine [3 ,4 ]
机构
[1] UCL, Dept Stat Sci, London, England
[2] Univ Calif Irvine, Dept Stat, Irvine, CA USA
[3] Duke Univ, Dept Stat Sci, Durham, NC USA
[4] RStudio, Durham, NC USA
来源
JOURNAL OF STATISTICS AND DATA SCIENCE EDUCATION | 2022年 / 30卷 / 03期
关键词
Computational reproducibility; Data science education; Open education; Teaching materials; Workflows;
D O I
10.1080/26939169.2022.2138645
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
It is recommended that teacher-scholars of data science adopt reproducible workflows in their research as scholars and teach reproducible workflows to their students. In this article, we propose a third dimension to reproducibility practices and recommend that regardless of whether they teach reproducibility in their courses or not, data science instructors adopt reproducible workflows for their own teaching. We consider computational reproducibility, documentation, and openness as three pillars of reproducible teaching framework. We share tools, examples, and recommendations for the three pillars.
引用
收藏
页码:251 / 260
页数:10
相关论文
共 50 条
  • [1] An Invitation to Teaching Reproducible Research: Lessons from a Symposium
    Ball, Richard
    Medeiros, Norm
    Bussberg, Nicholas W.
    Piekut, Aneta
    JOURNAL OF STATISTICS AND DATA SCIENCE EDUCATION, 2022, 30 (03): : 209 - 218
  • [2] Classification and Analysis of Techniques and Tools for Data Visualization Teaching
    Cuadrado-Gallego, Juan J.
    Demchenko, Yuri
    Losada, Miguel A.
    Ormandjieva, Olga
    PROCEEDINGS OF THE 2021 IEEE GLOBAL ENGINEERING EDUCATION CONFERENCE (EDUCON), 2021, : 1599 - 1605
  • [3] Editorial: Research Topic Tools, Techniques, and Strategies for Teaching in a Real-World Context With Microbiology
    Gordy, Claire L.
    Ramirez, Melissa V.
    Vandegrift, Micah
    Goller, Carlos C.
    FRONTIERS IN MICROBIOLOGY, 2021, 12
  • [4] The role of metadata in reproducible computational research
    Leipzig, Jeremy
    Nuest, Daniel
    Hoyt, Charles Tapley
    Ram, Karthik
    Greenberg, Jane
    PATTERNS, 2021, 2 (09):
  • [5] uap: reproducible and robust HTS data analysis
    Kaempf, Christoph
    Specht, Michael
    Scholz, Alexander
    Puppel, Sven-Holger
    Doose, Gero
    Reiche, Kristin
    Schor, Jana
    Hackermueller, Joerg
    BMC BIOINFORMATICS, 2019, 20 (01)
  • [6] OpenMS - A platform for reproducible analysis of mass spectrometry data
    Pfeuffer, Julianus
    Sachsenberg, Timo
    Alka, Oliver
    Walzer, Mathias
    Fillbrunn, Alexander
    Nilse, Lars
    Schilling, Oliver
    Reinert, Knut
    Kohlbacher, Oliver
    JOURNAL OF BIOTECHNOLOGY, 2017, 261 : 142 - 148
  • [7] CyberGIS-Jupyter for reproducible and scalable geospatial analytics
    Yin, Dandong
    Liu, Yan
    Hu, Hao
    Terstriep, Jeff
    Hong, Xingchen
    Padnnanabhan, Anand
    Wang, Shaowen
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2019, 31 (11)
  • [8] Most computational hydrology is not reproducible, so is it really science?
    Hutton, Christopher
    Wagener, Thorsten
    Freer, Jim
    Han, Dawei
    Duffy, Chris
    Arheimer, Berit
    WATER RESOURCES RESEARCH, 2016, 52 (10) : 7548 - 7555
  • [9] Detailed Implementation of a Reproducible Machine Learning-Enabled Workflow
    Schackart K.E., III
    Imker H.J.
    Cook C.E.
    Data Science Journal, 2024, 23 (01)
  • [10] Accessible and reproducible mass spectrometry imaging data analysis in Galaxy
    Foell, Melanie Christine
    Moritz, Lennart
    Wollmann, Thomas
    Stillger, Maren Nicole
    Vockert, Niklas
    Werner, Martin
    Bronsert, Peter
    Rohr, Karl
    Gruening, Bjoern Andreas
    Schilling, Oliver
    GIGASCIENCE, 2019, 8 (12):