CoSMix: Compositional Semantic Mix for Domain Adaptation in 3D LiDAR Segmentation

被引:34
作者
Saltori, Cristiano [1 ]
Galasso, Fabio [2 ]
Fiameni, Giuseppe [3 ]
Sebe, Nicu [1 ]
Ricci, Elisa [1 ,4 ]
Poiesi, Fabio [4 ]
机构
[1] Univ Trento, Trento, Italy
[2] Sapienza Univ Rome, Rome, Italy
[3] NVIDIA AI Technol Ctr, Rome, Italy
[4] Fdn Bruno Kessler, Trento, Italy
来源
COMPUTER VISION - ECCV 2022, PT XXXIII | 2022年 / 13693卷
基金
欧盟地平线“2020”;
关键词
Unsupervised domain adaptation; Point clouds; Semantic segmentation; LiDAR;
D O I
10.1007/978-3-031-19827-4_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
3D LiDAR semantic segmentation is fundamental for autonomous driving. Several Unsupervised Domain Adaptation (UDA) methods for point cloud data have been recently proposed to improve model generalization for different sensors and environments. Researchers working on UDA problems in the image domain have shown that sample mixing can mitigate domain shift. We propose a new approach of sample mixing for point cloud UDA, namely Compositional Semantic Mix (CoSMix), the first UDA approach for point cloud segmentation based on sample mixing. CoSMix consists of a two-branch symmetric network that can process labelled synthetic data (source) and real-world unlabelled point clouds (target) concurrently. Each branch operates on one domain by mixing selected pieces of data from the other one, and by using the semantic information derived from source labels and target pseudo-labels. We evaluate CoSMix on two large-scale datasets, showing that it outperforms state-of-the-art methods by a large margin (Our code is available at https://github.com/saltoricristiano/cosmix-uda).
引用
收藏
页码:586 / 602
页数:17
相关论文
共 45 条
[1]   3D-MiniNet: Learning a 2D Representation From Point Clouds for Fast and Efficient 3D LIDAR Semantic Segmentation [J].
Alonso, Inigo ;
Riazuelo, Luis ;
Montesano, Luis ;
Murillo, Ana C. .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (04) :5432-5439
[2]   SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences [J].
Behley, Jens ;
Garbade, Martin ;
Milioto, Andres ;
Quenzel, Jan ;
Behnke, Sven ;
Stachniss, Cyrill ;
Gall, Juergen .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :9296-9306
[3]   nuScenes: A multimodal dataset for autonomous driving [J].
Caesar, Holger ;
Bankiti, Varun ;
Lang, Alex H. ;
Vora, Sourabh ;
Liong, Venice Erin ;
Xu, Qiang ;
Krishnan, Anush ;
Pan, Yu ;
Baldan, Giancarlo ;
Beijbom, Oscar .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11618-11628
[4]   PointMixup: Augmentation for Point Clouds [J].
Chen, Yunlu ;
Hu, Vincent Tao ;
Gavves, Efstratios ;
Mensink, Thomas ;
Mettes, Pascal ;
Yang, Pengwan ;
Snoek, Cees G. M. .
COMPUTER VISION - ECCV 2020, PT III, 2020, 12348 :330-345
[5]   4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks [J].
Choy, Christopher ;
Gwak, JunYoung ;
Savarese, Silvio .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3070-3079
[6]  
Csurka Gabriela, 2017, ARXIV
[7]  
Dosovitskiy A, 2017, PR MACH LEARN RES, V78
[8]  
Gao L., 2021, ACMM
[9]   Vision meets robotics: The KITTI dataset [J].
Geiger, A. ;
Lenz, P. ;
Stiller, C. ;
Urtasun, R. .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2013, 32 (11) :1231-1237
[10]  
Geiger A, 2012, PROC CVPR IEEE, P3354, DOI 10.1109/CVPR.2012.6248074