Reconstruction of a Piecewise Smooth Absorption Coefficient by an Acousto-Optic Process

被引:19
作者
Ammari, Habib [1 ]
Garnier, Josselin [2 ,3 ]
Loc Hoang Nguyen [1 ]
Seppecher, Laurent [1 ]
机构
[1] Ecole Normale Super, Dept Math & Applicat, F-75230 Paris 05, France
[2] Univ Paris 07, Lab Probabilites & Modeles Aleatoires, Paris, France
[3] Univ Paris 07, Lab Jacques Louis Lions, Paris, France
关键词
Acousto-optic inverse problem; Helmholtz decomposition; Landweber iteration; Piecewise smooth functions; Reconstruction; Spherical Radon transform; Stability; ELECTRICAL-IMPEDANCE TOMOGRAPHY; LIPSCHITZ STABILITY; SCATTERING; WAVES;
D O I
10.1080/03605302.2013.803483
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to tackle the nonlinear optical reconstruction problem. Given a set of acousto-optic measurements, we develop a mathematical framework for the reconstruction problem in the case where the optical absorption distribution is supposed to be a perturbation of a piecewise constant function. Analyzing the acousto-optic measurements, we prove that the optical absorption coefficient satisfies, in the sense of distributions, a new equation. For doing so, we introduce a weak Helmholtz decomposition and interpret in a weak sense the cross-correlation measurements using the spherical Radon transform. We next show how to find an initial guess for the unknown coefficient. Finally, in order to construct the true coefficient we provide a Landweber type iteration and prove that the resulting sequence converges to the solution of the system constituted by the optical diffusion equation and the new equation mentioned above. Our results in this paper generalize the acousto-optic process proposed in [5] for piecewise smooth optical absorption distributions.
引用
收藏
页码:1737 / 1762
页数:26
相关论文
共 29 条
  • [1] Lipschitz stability for the inverse conductivity problem
    Alessandrini, G
    Vessella, S
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2005, 35 (02) : 207 - 241
  • [2] Electrical impedance tomography by elastic deformation
    Ammari, H.
    Bonnetier, E.
    Capdeboscq, Y.
    Tanter, M.
    Fink, M.
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2008, 68 (06) : 1557 - 1573
  • [3] Ammari H., P AM MATH S IN PRESS
  • [4] ACOUSTO-ELECTROMAGNETIC TOMOGRAPHY
    Ammari, Habib
    Bossy, Emmanuel
    Garnier, Josselin
    Seppecher, Laurent
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2012, 72 (05) : 1592 - 1617
  • [5] Resolution and stability analysis in acousto-electric imaging
    Ammari, Habib
    Garnier, Josselin
    Jing, Wenjia
    [J]. INVERSE PROBLEMS, 2012, 28 (08)
  • [6] Photoacoustic Imaging for Attenuating Acoustic Media
    Ammari, Habib
    Bretin, Elie
    Jugnon, Vincent
    Wahab, Abdul
    [J]. MATHEMATICAL MODELING IN BIOMEDICAL IMAGING II: OPTICAL, ULTRASOUND, AND OPTO-ACOUSTIC TOMOGRAPHIES, 2012, 2035 : 57 - 84
  • [7] MICROWAVE IMAGING BY ELASTIC DEFORMATION
    Ammari, Habib
    Capdeboscq, Yves
    de Gournay, Frederic
    Rozanova-Pierrat, Anna
    Triki, Faouzi
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2011, 71 (06) : 2112 - 2130
  • [8] Ammari H, 2008, MATH APPL-BERLIN, V62, P1
  • [9] [Anonymous], 1951, American journal of mathematics, DOI DOI 10.2307/2372313
  • [10] [Anonymous], 1977, Grundlagen der mathematischen Wissenschaften