On a class of singular second-order Hamiltonian systems with infinitely many homoclinic solutions

被引:15
作者
Costa, David G. [1 ]
Tehrani, Hossein [1 ]
机构
[1] Univ Nevada, Dept Math Sci, Las Vegas, NV 89154 USA
关键词
Singular Hamiltonian system; Homoclinic solution; Periodic coefficients; Category theory; Strong-Force condition; ORBITS; POTENTIALS; MULTIPLICITY; EXISTENCE; CATEGORY; SPACE;
D O I
10.1016/j.jmaa.2013.10.056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show existence of infinitely many homoclinic orbits at the origin for a class of singular second-order Hamiltonian systems ii + V-u(t,u) = 0, -infinity < t < infinity. We use variational methods under the assumption that V(t, u) satisfies the so-called "Strong-Force" condition. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:200 / 211
页数:12
相关论文
共 22 条
[1]  
Ambrosetti A., 1993, Progr. Nonlinear Differential Equations Appl., V10
[2]  
[Anonymous], 1994, COMM APPL NONLINEAR
[3]   A MINIMAX METHOD FOR A CLASS OF HAMILTONIAN-SYSTEMS WITH SINGULAR POTENTIALS [J].
BAHRI, A ;
RABINOWITZ, PH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 82 (02) :412-428
[4]   Multiplicity of homoclinic solutions for singular second-order conservative systems [J].
Bertotti, ML ;
Jeanjean, L .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1996, 126 :1169-1180
[5]   MULTIPLE HOMOCLINIC ORBITS FOR AUTONOMOUS, SINGULAR POTENTIALS [J].
BESSI, U .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1994, 124 :785-802
[6]   Heteroclinic and homoclinic solutions for a singular Hamiltonian system [J].
Borges, Maria Joao .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2006, 17 :1-32
[7]   Homoclinics and heteroclinics for a class of conservative singular Hamiltonian systems [J].
Caldiroli, P ;
Jeanjean, L .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 136 (01) :76-114
[8]   Multiple homoclinics for a class of singular Hamiltonian systems [J].
Caldiroli, P ;
DeCoster, C .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 211 (02) :556-573
[9]   EXISTENCE AND MULTIPLICITY OF HOMOCLINIC ORBITS FOR POTENTIALS ON UNBOUNDED-DOMAINS [J].
CALDIROLI, P .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1994, 124 :317-339
[10]  
Coti Zelati V., 1991, J. Am. Math. Soc., V4, P693, DOI 10.1090/S0894-0347-1991-1119200-3