On strongly regular graphs with eigenvalue 3 and their extensions

被引:16
作者
Makhnev, A. A. [1 ,2 ]
机构
[1] Russian Acad Sci, Krasovskii Inst Math & Mech, Ural Branch, Ekaterinburg 620219, Russia
[2] Ural Fed Univ, Ekaterinburg 620002, Russia
基金
俄罗斯基础研究基金会;
关键词
PSEUDOGEOMETRIC GRAPHS; NEIGHBORHOODS; VERTICES;
D O I
10.1134/S1064562413040261
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:453 / 456
页数:4
相关论文
共 13 条
[1]   Distance-regular extensions of strongly regular graphs with eigenvalue 2 [J].
Belousov, I. N. ;
Makhnev, A. A. ;
Nirova, M. S. .
DOKLADY MATHEMATICS, 2012, 86 (03) :816-819
[2]  
Gavrilyuk AL, 2010, T I MAT MEKH URO RAN, V16, P35
[3]   On distance-regular graphs in which the neighborhood of each vertex is isomorphic to the Hoffman-Singleton graph [J].
Gavrilyuk, A. L. ;
Makhnev, A. A. .
DOKLADY MATHEMATICS, 2009, 80 (02) :665-668
[4]   Graphs in Which the Neighborhoods of Vertices are Pseudogeometric Graphs for GQ(3,5) [J].
Gutnova, A. K. ;
Makhnev, A. A. .
DOKLADY MATHEMATICS, 2011, 83 (03) :376-379
[5]   On graphs in which the neighborhoods of vertices are pseudogeometric graphs for pG s-2(s, t) [J].
Gutnova, A. K. ;
Makhnev, A. A. .
DOKLADY MATHEMATICS, 2010, 81 (02) :222-226
[6]  
Gutnova A. K., 2010, T I MAT NATS AKAD NA, V18, P28
[7]  
Kabanov VV, 2010, T I MAT MEKH URO RAN, V16, P105
[8]   On Graphs in Which the Neighborhood of Each Vertex Is the Complementary Graph of a Seidel Graph [J].
Kardanova, M. L. ;
Makhnev, A. A. .
DOKLADY MATHEMATICS, 2010, 82 (02) :762-764
[9]  
Makhnev AA, 2012, T I MAT MEKH URO RAN, V18, P155
[10]  
Makhnev AA, 2011, T I MAT MEKH URO RAN, V17, P189