Comparison of Iron Oxide Nanoparticles in Photothermia and Magnetic Hyperthermia: Effects of Clustering and Silica Encapsulation on Nanoparticles' Heating Yield

被引:54
作者
Nemec, Sebastjan [1 ,2 ]
Kralj, Slavko [1 ,2 ]
Wilhelm, Claire [3 ,4 ]
Abou-Hassan, Ali [5 ]
Rols, Marie-Pierre [6 ]
Kolosnjaj-Tabi, Jelena [6 ]
机构
[1] Jozef Stefan Inst, Dept Mat Synth, Jamova Cesta 39, Ljubljana 1000, Slovenia
[2] Univ Ljubljana, Fac Pharm, Askerceva Cesta 7, Ljubljana 1000, Slovenia
[3] CNRS, UMR 7057, Lab Matiere & Syst Complexes MSC, Batiment Condorcet, F-75205 Paris, France
[4] Univ Paris Diderot, Batiment Condorcet, F-75205 Paris, France
[5] Sorbonne Univ, CNRS, UMR 8234, PHys Chim Electrolytes & Nanosyst InterfaciauX PH, F-75005 Paris, France
[6] Inst Pharmacol & Struct Biol, 205 Route Narbonne, F-31400 Toulouse, France
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 20期
关键词
superparamagnetic iron oxide nanoparticles; silica-coated magnetic nanoparticles clusters; hyperthermia; photothermal treatment; encapsulation; CANCER-THERAPY; ENHANCEMENT; DISSIPATION; AGENTS; MRI;
D O I
10.3390/app10207322
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Featured Application Superparamagnetic iron oxide nanoparticles (SPIONs) have a recognized potential for magnetic hyperthermia, and they are also being increasingly proposed as agents for photothermal treatment (photothermia), a biomedical modality where nanoparticles are excited by light to generate local hyperthermia. While it is known that endosomal internalization of SPIONs negatively affects magnetic hyperthermia, photothermia is not decreased. In an attempt to mimic nanoparticles clustering in endosomes, we herein investigate the effects of silica encapsulation and SPION clustering on both magnetic hyperthermia and photothermia. Photothermal therapy is gathering momentum. In order to assess the effects of the encapsulation of individual or clustered superparamagnetic iron oxide nanoparticles (SPIONs) on nanoparticle light-to-heat conversion, we designed and tested individual and clustered SPIONs encapsulated within a silica shell. Our study compared both photothermia and magnetic hyperthermia, and it involved individual SPIONs as well as silica-encapsulated individual and clustered SPIONs. While, as expected, SPION clustering reduced heat generation in magnetic hyperthermia, the silica shell improved SPION heating in photothermia.
引用
收藏
页数:12
相关论文
共 41 条
[1]   Biocompatible Nanoclusters with High Heating Efficiency for Systemically Delivered Magnetic Hyperthermia [J].
Albarqi, Hassan A. ;
Wong, Leon H. ;
Schumann, Canan ;
Sabei, Fahad Y. ;
Korzun, Tetiana ;
Li, Xiaoning ;
Hansen, Mikkel N. ;
Dhagat, Pallavi ;
Moses, Abraham S. ;
Taratula, Olena ;
Taratula, Oleh .
ACS NANO, 2019, 13 (06) :6383-6395
[2]   Hadron Therapy, Magnetic Nanoparticles and Hyperthermia: A Promising Combined Tool for Pancreatic Cancer Treatment [J].
Brero, Francesca ;
Albino, Martin ;
Antoccia, Antonio ;
Arosio, Paolo ;
Avolio, Matteo ;
Berardinelli, Francesco ;
Bettega, Daniela ;
Calzolari, Paola ;
Ciocca, Mario ;
Corti, Maurizio ;
Facoetti, Angelica ;
Gallo, Salvatore ;
Groppi, Flavia ;
Guerrini, Andrea ;
Innocenti, Claudia ;
Lenardi, Cristina ;
Locarno, Silvia ;
Manenti, Simone ;
Marchesini, Renato ;
Mariani, Manuel ;
Orsini, Francesco ;
Pignoli, Emanuele ;
Sangregorio, Claudio ;
Veronese, Ivan ;
Lascialfari, Alessandro .
NANOMATERIALS, 2020, 10 (10) :1-17
[3]   Iron Oxide Mediated Photothermal Therapy in the Second Biological Window: A Comparative Study between Magnetite/Maghemite Nanospheres and Nanoflowers [J].
Cabana, Sonia ;
Curcio, Alberto ;
Michel, Aude ;
Wilhelm, Claire ;
Abou-Hassan, Ali .
NANOMATERIALS, 2020, 10 (08) :1-17
[4]   Highly crystallized iron oxide nanoparticles as effective and biodegradable mediators for photothermal cancer therapy [J].
Chen, Hongwei ;
Burnett, Joseph ;
Zhang, Fuxiang ;
Zhang, Jiaming ;
Paholak, Hayley ;
Sun, Duxin .
JOURNAL OF MATERIALS CHEMISTRY B, 2014, 2 (07) :757-765
[5]   Status of clinical hyperthermia [J].
Dahl, O ;
Dalene, R ;
Schem, BC ;
Mella, O .
ACTA ONCOLOGICA, 1999, 38 (07) :863-873
[6]   One-Pot Method for Preparation of Magnetic Multi-Core Nanocarriers for Drug Delivery [J].
Dragar, Crt ;
Potrc, Tanja ;
Nemec, Sebastjan ;
Roskar, Robert ;
Pajk, Stane ;
Kocbek, Petra ;
Kralj, Slavko .
MATERIALS, 2019, 12 (03)
[7]   Magnetic (Hyper)Thermia or Photothermia? Progressive Comparison of Iron Oxide and Gold Nanoparticles Heating in Water, in Cells, and In Vivo [J].
Espinosa, Ana ;
Kolosnjaj-Tabi, Jelena ;
Abou-Hassan, Ali ;
Sangnier, Anouchka Plan ;
Curcio, Alberto ;
Silva, Amanda K. A. ;
Di Corato, Riccardo ;
Neveu, Sophie ;
Pellegrino, Teresa ;
Liz-Marzan, Luis M. ;
Wilhelm, Claire .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (37)
[8]   Intracellular Biodegradation of Ag Nanoparticles, Storage in Ferritin, and Protection by a Au Shell for Enhanced Photothermal Therapy [J].
Espinosa, Ana ;
Curcio, Alberto ;
Cabana, Sonia ;
Radtke, Guillaume ;
Bugnet, Matthieu ;
Kolosnjaj-Tabi, Jelena ;
Pechoux, Christine ;
Alvarez-Lorenzo, Carmen ;
Botton, Gianluigi A. ;
Silva, Amanda K. A. ;
Abou-Hassan, Ali ;
Wilhelm, Claire .
ACS NANO, 2018, 12 (07) :6523-6535
[9]   Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment [J].
Espinosa, Ana ;
Di Corato, Riccardo ;
Kolosnjaj-Tabi, Jelena ;
Flaud, Patrice ;
Pellegrino, Teresa ;
Wilhelm, Claire .
ACS NANO, 2016, 10 (02) :2436-2446
[10]   Study of the effect of dipole interactions on hyperthermia heating the cluster composed of superparamagnetic nanoparticles [J].
Fu, R. ;
Yan, Y. Y. ;
Roberts, C. .
AIP ADVANCES, 2015, 5 (12)