Computational Intelligence on Short-Term Load Forecasting: A Methodological Overview

被引:81
作者
Fallah, Seyedeh Narjes
Ganjkhani, Mehdi [1 ]
Shamshirband, Shahaboddin [2 ,3 ]
Chau, Kwok-wing [4 ]
机构
[1] Sharif Univ Technol, Dept Elect Engn, POB 11365-11155, Tehran, Iran
[2] Ton Duc Thang Univ, Dept Management Sci & Technol Dev, Ho Chi Minh City, Vietnam
[3] Ton Duc Thang Univ, Fac Informat Technol, Ho Chi Minh City, Vietnam
[4] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hong Kong, Peoples R China
关键词
short-term load forecasting; demand-side management; pattern similarity; hierarchical short-term load forecasting; feature selection; weather station selection; PARTICLE SWARM OPTIMIZATION; FEATURE-SELECTION; FEATURE-EXTRACTION; MEMETIC ALGORITHM; ELECTRICITY LOAD; NEURAL NETWORKS; VECTOR; MODEL; REGRESSION; IDENTIFICATION;
D O I
10.3390/en12030393
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Electricity demand forecasting has been a real challenge for power system scheduling in different levels of energy sectors. Various computational intelligence techniques and methodologies have been employed in the electricity market for short-term load forecasting, although scant evidence is available about the feasibility of these methods considering the type of data and other potential factors. This work introduces several scientific, technical rationales behind short-term load forecasting methodologies based on works of previous researchers in the energy field. Fundamental benefits and drawbacks of these methods are discussed to represent the efficiency of each approach in various circumstances. Finally, a hybrid strategy is proposed.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Short-Term Load Forecasting Using Adaptive Annealing Learning Algorithm Based Reinforcement Neural Network
    Lee, Cheng-Ming
    Ko, Chia-Nan
    ENERGIES, 2016, 9 (12)
  • [32] Reduction of Computational Burden and Accuracy Maximization in Short-Term Load Forecasting
    Candela Esclapez, Alfredo
    Lopez Garcia, Miguel
    Valero Verdu, Sergio
    Senabre Blanes, Carolina
    ENERGIES, 2022, 15 (10)
  • [33] Assessment of aggregation strategies for machine-learning based short-term load forecasting
    Feng, Cong
    Zhang, Jie
    ELECTRIC POWER SYSTEMS RESEARCH, 2020, 184
  • [34] Integrating Long Short-Term Memory and Genetic Algorithm for Short-Term Load Forecasting
    Santra, Arpita Samanta
    Lin, Jun-Lin
    ENERGIES, 2019, 12 (11)
  • [35] A Methodology for Short-Term Load Forecasting
    Jiménez J.
    Donado K.
    Quintero C.G.
    Quintero, C.G. (christianq@uninorte.edu.co), 2017, IEEE Computer Society (15): : 400 - 407
  • [36] A State-of-the-Art Review of Artificial Intelligence Techniques for Short-Term Electric Load Forecasting
    Zor, Kasim
    Timur, Oguzhan
    Teke, Ahmet
    2017 6TH INTERNATIONAL YOUTH CONFERENCE ON ENERGY (IYCE), 2017,
  • [37] Forecasting Short-Term Electricity Load with Combinations of Singular Spectrum Analysis
    Zhang, Xiaobo
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2023, 48 (02) : 1609 - 1624
  • [38] Short-Term Load Forecasting Based on Data Decomposition and Dynamic Correlation
    Wang, Min
    Zuo, Fanglin
    Wu, Chao
    Yu, Zixuan
    Chen, Yuan
    Wang, Huilin
    IEEE ACCESS, 2023, 11 : 107297 - 107308
  • [39] Application of echo state networks in short-term electric load forecasting
    Deihimi, Ali
    Showkati, Hemen
    ENERGY, 2012, 39 (01) : 327 - 340
  • [40] Short-Term Load Forecasting Using Fuzzy Logic
    Blancas, Jordan
    Noel, Julien
    PROCEEDINGS OF THE 2018 IEEE PES TRANSMISSION & DISTRIBUTION CONFERENCE AND EXHIBITION - LATIN AMERICA (T&D-LA), 2018,